The Annals of Probability

Two-sided estimates of heat kernels on metric measure spaces

Alexander Grigor’yan and Andras Telcs

Full-text: Open access

Abstract

We prove equivalent conditions for two-sided sub-Gaussian estimates of heat kernels on metric measure spaces.

Article information

Source
Ann. Probab., Volume 40, Number 3 (2012), 1212-1284.

Dates
First available in Project Euclid: 4 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.aop/1336136063

Digital Object Identifier
doi:10.1214/11-AOP645

Mathematical Reviews number (MathSciNet)
MR2962091

Zentralblatt MATH identifier
1252.35148

Subjects
Primary: 47D07: Markov semigroups and applications to diffusion processes {For Markov processes, see 60Jxx}
Secondary: 35K08: Heat kernel 28A80: Fractals [See also 37Fxx]

Keywords
Heat kernel heat semigroup sub-Gaussian estimates fractals

Citation

Grigor’yan, Alexander; Telcs, Andras. Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40 (2012), no. 3, 1212--1284. doi:10.1214/11-AOP645. https://projecteuclid.org/euclid.aop/1336136063


Export citation

References

  • [1] Aronson, D. G. (1968). Non-negative solutions of linear parabolic equations. Ann. Sc. Norm. Super. Pisa (3) 22 607–694.
  • [2] Barlow, M. T. (1998). Diffusions on fractals. In Lectures on Probability Theory and Statistics (Saint-Flour, 1995). Lecture Notes in Math. 1690 1–121. Springer, Berlin.
  • [3] Barlow, M. T. and Bass, R. F. (1989). The construction of Brownian motion on the Sierpiński carpet. Ann. Inst. Henri Poincaré Probab. Stat. 25 225–257.
  • [4] Barlow, M. T. and Bass, R. F. (1992). Transition densities for Brownian motion on the Sierpiński carpet. Probab. Theory Related Fields 91 307–330.
  • [5] Barlow, M. T. and Bass, R. F. (1999). Brownian motion and harmonic analysis on Sierpinski carpets. Canad. J. Math. 51 673–744.
  • [6] Barlow, M. T., Bass, R. F., Chen, Z.-Q. and Kassmann, M. (2009). Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 1963–1999.
  • [7] Barlow, M. T., Bass, R. F. and Kumagai, T. (2006). Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58 485–519.
  • [8] Barlow, M. T., Bass, R. F., Kumagai, T. and Teplyaev, A. (2010). Uniqueness of Brownian motion on Sierpiński carpets. J. Eur. Math. Soc. (JEMS) 12 655–701.
  • [9] Barlow, M. T., Grigor’yan, A. and Kumagai, T. (2009). Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 135–157.
  • [10] Barlow, M. T., Grigor’yan, A. and Kumagai, T. (2012). On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan. To appear.
  • [11] Barlow, M. T. and Hambly, B. M. (1997). Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. Henri Poincaré Probab. Stat. 33 531–557.
  • [12] Barlow, M. T. and Perkins, E. A. (1988). Brownian motion on the Sierpiński gasket. Probab. Theory Related Fields 79 543–623.
  • [13] Chavel, I. (1984). Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115. Academic Press, Orlando, FL.
  • [14] Chavel, I. (2001). Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives. Cambridge Tracts in Mathematics 145. Cambridge Univ. Press, Cambridge.
  • [15] Coulhon, T. and Grigoryan, A. (1998). Random walks on graphs with regular volume growth. Geom. Funct. Anal. 8 656–701.
  • [16] Davies, E. B. (1980). One-Parameter Semigroups. London Mathematical Society Monographs 15. Academic Press [Harcourt Brace Jovanovich Publishers], London.
  • [17] Davies, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92. Cambridge Univ. Press, Cambridge.
  • [18] Fabes, E. B. and Stroock, D. W. (1986). A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96 327–338.
  • [19] Fitzsimmons, P. J., Hambly, B. M. and Kumagai, T. (1994). Transition density estimates for Brownian motion on affine nested fractals. Comm. Math. Phys. 165 595–620.
  • [20] Fukushima, M., Ōshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. de Gruyter, Berlin.
  • [21] Goldstein, S. (1987). Random walks and diffusions on fractals. In Percolation Theory and Ergodic Theory of Infinite Particle Systems (Minneapolis, Minn., 19841985) (H. Kesten, ed.). The IMA Volumes in Mathematics and its Applications 8 121–129. Springer, New York.
  • [22] Grigor’yan, A. (1991). The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182 55–87.
  • [23] Grigor’yan, A. (1994). Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoam. 10 395–452.
  • [24] Grigor’yan, A. (1997). Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differential Geom. 45 33–52.
  • [25] Grigor’yan, A. (1999). Estimates of heat kernels on Riemannian manifolds. In Spectral Theory and Geometry (Edinburgh, 1998). London Mathematical Society Lecture Note Series 273 140–225. Cambridge Univ. Press, Cambridge.
  • [26] Grigor’yan, A. (2003). Heat kernels and function theory on metric measure spaces. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemporary Mathematics 338 143–172. Amer. Math. Soc., Providence, RI.
  • [27] Grigor’yan, A. (2006). Heat kernels on weighted manifolds and applications. In The Ubiquitous Heat Kernel. Contemporary Mathematics 398 93–191. Amer. Math. Soc., Providence, RI.
  • [28] Grigor’yan, A. (2009). Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics 47. Amer. Math. Soc., Providence, RI.
  • [29] Grigor’yan, A. (2010). Heat kernels on metric measure spaces with regular volume growth. In Handbook of Geometric Analysis, No. 2 (L. Ji, P. Li, R. Schoen and L. Simon, eds.). Advanced Lectures in Math. 13 1–60. International Press, Somerville, MA.
  • [30] Grigor’yan, A. and Hu, J. (2008). Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174 81–126.
  • [31] Grigor’yan, A. and Hu, J. (2009). Upper bounds of heat kernels on doubling spaces. Preprint.
  • [32] Grigor’yan, A., Hu, J. and Lau, K.-S. (2003). Heat kernels on metric measure spaces and an application to semilinear elliptic equations. Trans. Amer. Math. Soc. 355 2065–2095 (electronic).
  • [33] Grigor’yan, A., Hu, J. and Lau, K.-S. (2010). Comparison inequalities for heat semigroups and heat kernels on metric measure spaces. J. Funct. Anal. 259 2613–2641.
  • [34] Grigor’yan, A., Hu, J. and Lau, K. S. (2009). Heat kernels on metric spaces with doubling measure. In Fractal Geometry and Stochastics IV (Ch. Brandt, P. Mörters and M. Zähle, eds.). Progress in Probability 61 3–44. Birkhäuser, Basel.
  • [35] Grigor’yan, A. and Saloff-Coste, L. (2009). Heat kernel on manifolds with ends. Ann. Inst. Fourier (Grenoble) 59 1917–1997.
  • [36] Grigor’yan, A. and Telcs, A. (2001). Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109 451–510.
  • [37] Grigor’yan, A. and Telcs, A. (2002). Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324 521–556.
  • [38] Gushchin, A. K. (1982). Uniform stabilization of solutions of the second mixed problem for a parabolic equation. Mat. Sb. (N.S.) 119 451–508, 590.
  • [39] Gushchin, A. K., Mikhaĭlov, V. P. and Mikhaĭlov, Y. A. (1985). Uniform stabilization of the solution of the second mixed problem for a second-order parabolic equation. Mat. Sb. (N.S.) 128 147–168, 287.
  • [40] Hambly, B. M. and Kumagai, T. (1999). Transition density estimates for diffusion processes on post critically finite self-similar fractals. Proc. Lond. Math. Soc. (3) 78 431–458.
  • [41] Hebisch, W. and Saloff-Coste, L. (2001). On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier (Grenoble) 51 1437–1481.
  • [42] Jorgenson, J. and Lynne, W., eds. (2006). The Ubiquitous Heat Kernel. Contemporary Mathematics 398. Amer. Math. Soc., Providence, RI.
  • [43] Kigami, J. (1993). Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc. 335 721–755.
  • [44] Kigami, J. (2001). Analysis on Fractals. Cambridge Tracts in Mathematics 143. Cambridge Univ. Press, Cambridge.
  • [45] Kigami, J. (2004). Local Nash inequality and inhomogeneity of heat kernels. Proc. Lond. Math. Soc. (3) 89 525–544.
  • [46] Kigami, J. (2009). Resistance forms, quasisymmetric maps and heat kernel estimates. Preprint.
  • [47] Kigami, J. (2009). Volume doubling measures and heat kernel estimates on self-similar sets. Mem. Amer. Math. Soc. 199 viii+94.
  • [48] Kumagai, T. (1993). Estimates of transition densities for Brownian motion on nested fractals. Probab. Theory Related Fields 96 205–224.
  • [49] Kusuoka, S. (1987). A diffusion process on a fractal. In Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985) (K. Ito and N. Ikeda, eds.) 251–274. Academic Press, Boston, MA.
  • [50] Kusuoka, S. and Yin, Z. X. (1992). Dirichlet forms on fractals: Poincaré constant and resistance. Probab. Theory Related Fields 93 169–196.
  • [51] Li, P. and Yau, S.-T. (1986). On the parabolic kernel of the Schrödinger operator. Acta Math. 156 153–201.
  • [52] Molčanov, S. A. (1975). Diffusion processes and Riemannian geometry. Uspehi Mat. Nauk 30 3–59.
  • [53] Moser, J. (1961). On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 577–591.
  • [54] Moser, J. (1964). A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17 101–134.
  • [55] Saloff-Coste, L. (1992). A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. IMRN 2 27–38.
  • [56] Saloff-Coste, L. (2002). Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series 289. Cambridge Univ. Press, Cambridge.
  • [57] Schoen, R. and Yau, S. T. (1994). Lectures on Differential Geometry. International Press, Cambridge, MA.
  • [58] Telcs, A. (2006). The Art of Random Walks. Lecture Notes in Math. 1885. Springer, Berlin.
  • [59] Varopoulos, N. T., Saloff-Coste, L. and Coulhon, T. (1992). Analysis and Geometry on Groups. Cambridge Tracts in Mathematics 100. Cambridge Univ. Press, Cambridge.
  • [60] Yosida, K. (1980). Functional Analysis, 6th ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 123. Springer, Berlin.