Annals of Probability

Random continued fractions with beta-hypergeometric distribution

Gérard Letac and Mauro Piccioni

Full-text: Open access


In a recent paper [Statist. Probab. Lett. 78 (2008) 1711–1721] it has been shown that certain random continued fractions have a density which is a product of a beta density and a hypergeometric function 2F1. In the present paper we fully exploit a formula due to Thomae [J. Reine Angew. Math. 87 (1879) 26–73] in order to generalize substantially the class of random continuous fractions with a density of the above form. This involves the design of seven particular graphs. Infinite paths on them lead to random continued fractions with an explicit distribution. A careful study about the set of five real parameters leading to a beta-hypergeometric distribution is required, relying on almost forgotten results mainly due to Felix Klein.

Article information

Ann. Probab., Volume 40, Number 3 (2012), 1105-1134.

First available in Project Euclid: 4 May 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J05: Discrete-time Markov processes on general state spaces
Secondary: 60E05: Distributions: general theory

Distributions on (0,1) with five parameters generalized hypergeometric functions periodic random continued fractions


Letac, Gérard; Piccioni, Mauro. Random continued fractions with beta-hypergeometric distribution. Ann. Probab. 40 (2012), no. 3, 1105--1134. doi:10.1214/10-AOP642.

Export citation


  • Abramovitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions. Dover, New York.
  • Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions. Encyclopedia of Mathematics and Its Applications 71. Cambridge Univ. Press, Cambridge.
  • Asci, C., Letac, G. and Piccioni, M. (2008). Beta-hypergeometric distributions and random continued fractions. Statist. Probab. Lett. 78 1711–1721.
  • Bailey, W. N. (1935). Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics 32. Cambridge Univ. Press, Cambridge.
  • Beyer, W. A., Louck, J. D. and Stein, P. R. (1987). Group theoretical basis of some identities for the generalized hypergeometric series. J. Math. Phys. 28 497–508.
  • Chamayou, J.-F. and Letac, G. (1991). Explicit stationary distributions for compositions of random functions and products of random matrices. J. Theoret. Probab. 4 3–36.
  • Dyson, F. J. (1953). The dynamics of a disordered linear chain. Physical Rev. (2) 92 1331–1338.
  • Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954). Tables of Integral Transforms, Vol. 2. McGraw-Hill, New York.
  • Henrici, P. (1977). Applied and Computational Complex Analysis, Vol. 2. Wiley, New York.
  • Hurwitz, A. (1891). Ueber die Nullstellen der hypergeometrischen Reihe. Math. Ann. 38 452–458.
  • Klein, F. (1890). Ueber die Nullstellen der hypergeometrischen Reihe. Math. Ann. 37 573–590.
  • Letac, G. (1986). A contraction principle for certain Markov chains and its applications. In Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemp. Math. 50 263–273. Amer. Math. Soc., Providence, RI.
  • Letac, G. and Seshadri, V. (1983). A characterization of the generalized inverse Gaussian distribution by continued fractions. Z. Wahrsch. Verw. Gebiete 62 485–489.
  • Lloyd, P. (1969). Exactly solvable model in electronic states in a three dimensional disordered Hamiltonian: Non-existence of localized states. J. Phys. C. Solid State Phys. 2 1717–1725.
  • Maier, R. S. (2006). A generalization of Euler’s hypergeometric transformation. Trans. Amer. Math. Soc. 358 39–57 (electronic).
  • Marklof, J., Tourigny, Y. and Wołowski, L. (2008). Explicit invariant measures for products of random matrices. Trans. Amer. Math. Soc. 360 3391–3427.
  • Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9 223–252.
  • Rainville, E. D. (1960). Special Functions. Macmillan, New York.
  • Thomae, J. (1879). Ueber die Funktionen, welche durch Reichen von der Form dargestellst verden 1 + (p/1)(p/q)(p′′/q′′) + (p/1)((p + 1)/2)(p/q)((p + 1)/(q + 1))(p′′/q′′)((p′′ + 1)/(q′′ + 1)) + . J. Reine Angew. Math. 87 26–73.
  • Van Vleck, E. B. (1902). A determination of the number of real and imaginary roots of the hypergeometric series. Trans. Amer. Math. Soc. 3 110–131.