The Annals of Probability

Limit theorems for 2D invasion percolation

Michael Damron and Artëm Sapozhnikov

Full-text: Open access


We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the nth of which gives the number of outlets in the box centered at the origin of side length 2n. The most important of these properties describes the sequence’s renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.

Article information

Ann. Probab., Volume 40, Number 3 (2012), 893-920.

First available in Project Euclid: 4 May 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B43: Percolation [See also 60K35]

Invasion percolation invasion ponds critical percolation near critical percolation correlation length scaling relations central limit theorem


Damron, Michael; Sapozhnikov, Artëm. Limit theorems for 2D invasion percolation. Ann. Probab. 40 (2012), no. 3, 893--920. doi:10.1214/10-AOP641.

Export citation


  • [1] Angel, O., Goodman, J., den Hollander, F. and Slade, G. (2008). Invasion percolation on regular trees. Ann. Probab. 36 420–466.
  • [2] Chandler, R., Koplick, J., Lerman, K. and Willemsen, J. F. (1982). Capillary displacement and percolation in porous media. J. Fluid Mech. 119 249–267.
  • [3] Chayes, J. T., Chayes, L. and Newman, C. M. (1985). The stochastic geometry of invasion percolation. Comm. Math. Phys. 101 383–407.
  • [4] Damron, M. and Sapozhnikov, A. (2011). Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters. Probab. Theory Related Fields 150 257–294.
  • [5] Damron, M., Sapozhnikov, A. and Vágvölgyi, B. (2009). Relations between invasion percolation and critical percolation in two dimensions. Ann. Probab. 37 2297–2331.
  • [6] Davydov, Y. (1968). Convergence of distributions generated by stationary stochastic processes. Theory Probab. Appl. 13 691–696.
  • [7] Goodman, J. (2009). Exponential growth of ponds for invasion percolation on regular trees. Available at arXiv:0912.5205.
  • [8] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [9] Häggström, O., Peres, Y. and Schonmann, R. H. (1999). Percolation on transitive graphs as a coalescent process: Relentless merging followed by simultaneous uniqueness. In Perplexing Problems in Probability. Progress in Probability 44 69–90. Birkhäuser, Boston, MA.
  • [10] Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
  • [11] Járai, A. A. (2003). Invasion percolation and the incipient infinite cluster in 2D. Comm. Math. Phys. 236 311–334.
  • [12] Kesten, H. (1987). Scaling relations for 2D-percolation. Comm. Math. Phys. 109 109–156.
  • [13] Kesten, H. and Zhang, Y. (1997). A central limit theorem for “critical” first-passage percolation in two dimensions. Probab. Theory Related Fields 107 137–160.
  • [14] Lenormand, R. and Bories, S. (1980). Description d’un mecanisme de connexion de liaision destine a l’etude du drainage avec piegeage en milieu poreux. C. R. Acad. Sci. 291 279–282.
  • [15] Newman, C. and Stein, D. L. (1995). Broken ergodicity and the geometry of rugged landscapes. Phys. Rev. E 51 5228–5238.
  • [16] Nguyen, B. G. (1985). Correlation lengths for percolation processes. Ph.D. thesis, Univ. California, Los Angeles.
  • [17] Nolin, P. (2008). Near-critical percolation in two dimensions. Electron. J. Probab. 13 1562–1623.
  • [18] van den Berg, J., Járai, A. A. and Vágvölgyi, B. (2007). The size of a pond in 2D invasion percolation. Electron. Commun. Probab. 12 411–420.
  • [19] Withers, C. S. (1981). Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete 57 509–534.
  • [20] Zhang, Y. (2001). A martingale approach in the study of percolation clusters on the Zd lattice. J. Theoret. Probab. 14 165–187.