Annals of Probability

Diffusivity bounds for 1D Brownian polymers

Pierre Tarrès, Bálint Tóth, and Benedek Valkó

Full-text: Open access

Abstract

We study the asymptotic behavior of a self-interacting one-dimensional Brownian polymer first introduced by Durrett and Rogers [Probab. Theory Related Fields 92 (1992) 337–349]. The polymer describes a stochastic process with a drift which is a certain average of its local time.

We show that a smeared out version of the local time function as viewed from the actual position of the process is a Markov process in a suitably chosen function space, and that this process has a Gaussian stationary measure. As a first consequence, this enables us to partially prove a conjecture about the law of large numbers for the end-to-end displacement of the polymer formulated in Durrett and Rogers [Probab. Theory Related Fields 92 (1992) 337–349].

Next we give upper and lower bounds for the variance of the process under the stationary measure, in terms of the qualitative infrared behavior of the interaction function. In particular, we show that in the locally self-repelling case (when the process is essentially pushed by the negative gradient of its own local time) the process is super-diffusive.

Article information

Source
Ann. Probab., Volume 40, Number 2 (2012), 695-713.

Dates
First available in Project Euclid: 26 March 2012

Permanent link to this document
https://projecteuclid.org/euclid.aop/1332772717

Digital Object Identifier
doi:10.1214/10-AOP630

Mathematical Reviews number (MathSciNet)
MR2952088

Zentralblatt MATH identifier
1242.60105

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments 60K40: Other physical applications of random processes
Secondary: 60F15: Strong theorems 60G15: Gaussian processes 60J25: Continuous-time Markov processes on general state spaces 60J55: Local time and additive functionals

Keywords
Brownian polymers self-repelling random motion local time Gaussian stationary measure strong theorems asymptotic lower and upper bounds resolvent method

Citation

Tarrès, Pierre; Tóth, Bálint; Valkó, Benedek. Diffusivity bounds for 1D Brownian polymers. Ann. Probab. 40 (2012), no. 2, 695--713. doi:10.1214/10-AOP630. https://projecteuclid.org/euclid.aop/1332772717


Export citation

References

  • [1] Amit, D. J., Parisi, G. and Peliti, L. (1983). Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B (3) 27 1635–1645.
  • [2] Cranston, M. and Le Jan, Y. (1995). Self-attracting diffusions: Two case studies. Math. Ann. 303 87–93.
  • [3] Cranston, M. and Mountford, T. S. (1996). The strong law of large numbers for a Brownian polymer. Ann. Probab. 24 1300–1323.
  • [4] den Hollander, F. and Steif, J. E. (2006). Random walk in random scenery: A survey of some recent results. In Dynamics & Stochastics. Institute of Mathematical Statistics Lecture Notes—Monograph Series 48 53–65. IMS, Beachwood, OH.
  • [5] Dobrushin, R. L., Sukhov, Y. M. and Fritts, Ĭ. (1988). A. N. Kolmogorov—founder of the theory of reversible Markov processes. Uspekhi Mat. Nauk 43 167–188.
  • [6] Durrett, R. T. and Rogers, L. C. G. (1992). Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields 92 337–349.
  • [7] Horváth, I., Tóth, B. and Vető, B. (2009). Diffusive limit for self-repelling Brownian polymers in d≥3. Available at http://arxiv.org/abs/0912.5174.
  • [8] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge Univ. Press, Cambridge.
  • [9] Kesten, H. and Spitzer, F. (1979). A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 5–25.
  • [10] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin.
  • [11] Landim, C., Olla, S. and Varadhan, S. R. S. (2000). Asymptotic behavior of a tagged particle in simple exclusion processes. Bol. Soc. Brasil. Mat. (N.S.) 31 241–275.
  • [12] Landim, C., Quastel, J., Salmhofer, M. and Yau, H. T. (2004). Superdiffusivity of asymmetric exclusion process in dimensions one and two. Comm. Math. Phys. 244 455–481.
  • [13] Landim, C. and Yau, H. T. (1997). Fluctuation-dissipation equation of asymmetric simple exclusion processes. Probab. Theory Related Fields 108 321–356.
  • [14] Marcus, M. B. (1972). Upper bounds for the asymptotic maxima of continuous Gaussian processes. Ann. Math. Statist. 43 522–533.
  • [15] Marcus, M. B. and Rosen, J. (2006). Markov Processes, Gaussian Processes, and Local Times. Cambridge Studies in Advanced Mathematics 100. Cambridge Univ. Press, Cambridge.
  • [16] Mountford, T. and Tarrès, P. (2008). An asymptotic result for Brownian polymers. Ann. Inst. Henri Poincaré Probab. Stat. 44 29–46.
  • [17] Norris, J. R., Rogers, L. C. G. and Williams, D. (1987). Self-avoiding random walk: A Brownian motion model with local time drift. Probab. Theory Related Fields 74 271–287.
  • [18] Olla, S. (2001). Central limit theorems for tagged particles and for diffusions in random environment. In Milieux Aléatoires (F. Comets and É. Pardoux, eds.). Panoramas et Synthèses 12 75–100. Soc. Math. France, Paris.
  • [19] Quastel, J. and Valkó, B. (2008). A note on the diffusivity of finite-range asymmetric exclusion processes on ℤ. In In and Out of Equilibrium. 2 (V. Sidoravicius and M. E. Vares, eds.). Progress in Probability 60 543–549. Birkhäuser, Basel.
  • [20] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes, and Martingales. Vol. 2. Wiley, New York.
  • [21] Sethuraman, S., Varadhan, S. R. S. and Yau, H.-T. (2000). Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Comm. Pure Appl. Math. 53 972–1006.
  • [22] Simon, B. (1974). The P(ϕ)2 Euclidean (Quantum) Field Theory. Princeton Univ. Press, Princeton, NJ.
  • [23] Tóth, B. (1995). The “true” self-avoiding walk with bond repulsion on ℤ: Limit theorems. Ann. Probab. 23 1523–1556.
  • [24] Tóth, B. (1999). Self-interacting random motions—a survey. In Random Walks (Budapest, 1998) (P. Rév’esz and B. Tóth, eds.). Bolyai Society Mathematical Studies 9 349–384. János Bolyai Math. Soc., Budapest.
  • [25] Tóth, B. and Werner, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375–452.
  • [26] Yaglom, A. M. (1947). On the statistical treatment of Brownian motion. Doklady Akad. Nauk SSSR (N.S.) 56 691–694.
  • [27] Yaglom, A. M. (1949). On the statistical reversibility of Brownian motion. Mat. Sbornik N.S. 24 457–492.