The Annals of Probability

Lattice embeddings in percolation

Geoffrey R. Grimmett and Alexander E. Holroyd

Full-text: Open access

Abstract

Does there exist a Lipschitz injection of ℤd into the open set of a site percolation process on ℤD, if the percolation parameter p is sufficiently close to 1? We prove a negative answer when d = D and also when d ≥ 2 if the Lipschitz constant M is required to be 1. Earlier work of Dirr, Dondl, Grimmett, Holroyd and Scheutzow yields a positive answer for d < D and M = 2. As a result, the above question is answered for all d, D and M. Our proof in the case d = D uses Tucker’s lemma from topological combinatorics, together with the aforementioned result for d < D. One application is an affirmative answer to a question of Peled concerning embeddings of random patterns in two and more dimensions.

Article information

Source
Ann. Probab., Volume 40, Number 1 (2012), 146-161.

Dates
First available in Project Euclid: 3 January 2012

Permanent link to this document
https://projecteuclid.org/euclid.aop/1325605000

Digital Object Identifier
doi:10.1214/10-AOP615

Mathematical Reviews number (MathSciNet)
MR2917770

Zentralblatt MATH identifier
1238.60110

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Lipschitz embedding lattice random pattern percolation quasi-isometry

Citation

Grimmett, Geoffrey R.; Holroyd, Alexander E. Lattice embeddings in percolation. Ann. Probab. 40 (2012), no. 1, 146--161. doi:10.1214/10-AOP615. https://projecteuclid.org/euclid.aop/1325605000


Export citation

References

  • [1] Baker, J. K. (1970). A combinatorial proof of Tucker’s lemma for the n-cube. J. Combin. Theory 8 279–290.
  • [2] Dirr, N., Dondl, P. W., Grimmett, G. R., Holroyd, A. E. and Scheutzow, M. (2010). Lipschitz percolation. Electron. Comm. Probab. 15 14–21.
  • [3] Dirr, N., Dondl, P. W. and Scheutzow, M. (2009). Pinning of interfaces in random media. Unpublished manuscript. Available at arXiv:0911.4254.
  • [4] Grimmett, G. R. (2010). Three problems for the clairvoyant demon. In Probability and Mathematical Genetics (N. H. Bingham and C. M. Goldie, eds.) 379–395. Cambridge Univ. Press, Cambridge.
  • [5] Grimmett, G. R. and Holroyd, A. E. (2010). Geometry of Lipschitz percolation. Ann. Inst. Henri Poincaré Probab. Stat. To appear. Available at arXiv:1007.3762.
  • [6] Grimmett, G. R. and Holroyd, A. E. (2010). Plaquettes, spheres, and entanglement. Electron. J. Probab. 15 1415–1428.
  • [7] Grimmett, G. R., Liggett, T. M. and Richthammer, T. (2010). Percolation of arbitrary words in one dimension. Random Structures Algorithms 37 85–99.
  • [8] Lefschetz, S. (1949). Introduction to Topology. Princeton Mathematical Series 11. Princeton Univ. Press, Princeton, NJ.
  • [9] Lyons, R. (2000). Phase transitions on nonamenable graphs. J. Math. Phys. 41 1099–1126.
  • [10] Matoušek, J. (2003). Using the Borsuk–Ulam Theorem. Springer, Berlin.
  • [11] Peled, R. (2010). On rough isometries of Poisson processes on the line. Ann. Appl. Probab. 20 462–494.
  • [12] Tucker, A. W. (1946). Some topological properties of disk and sphere. In Proc. First Canadian Math. Congress, Montreal, 1945 285–309. Univ. of Toronto Press, Toronto.