The Annals of Probability

T. E. Harris’s contributions to recurrent Markov processes and stochastic flows

Peter Baxendale

Full-text: Open access

Abstract

This is a brief survey of T. E. Harris’s work on recurrent Markov processes and on stochastic flows, and of some more recent work in these fields.

Article information

Source
Ann. Probab., Volume 39, Number 2 (2011), 417-428.

Dates
First available in Project Euclid: 25 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.aop/1298669167

Digital Object Identifier
doi:10.1214/10-AOP594

Mathematical Reviews number (MathSciNet)
MR2789501

Zentralblatt MATH identifier
1213.60116

Subjects
Primary: 60J05: Discrete-time Markov processes on general state spaces 60H10: Stochastic ordinary differential equations [See also 34F05]

Keywords
Recurrent Markov processes Harris recurrence stirring processes stochastic flows coalescence

Citation

Baxendale, Peter. T. E. Harris’s contributions to recurrent Markov processes and stochastic flows. Ann. Probab. 39 (2011), no. 2, 417--428. doi:10.1214/10-AOP594. https://projecteuclid.org/euclid.aop/1298669167


Export citation

References

  • [1] Arnold, L. (1998). Random Dynamical Systems. Springer, Berlin.
  • [2] Arratia, R. A. (1979). Coalescing Brownian motions on the line. Ph.D. thesis, Univ. Wisconsin, Madison.
  • [3] Baxendale, P. H. (1994). A stochastic Hopf bifurcation. Probab. Theory Related Fields 99 581–616.
  • [4] Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 700–738.
  • [5] Baxendale, P. and Harris, T. E. (1986). Isotropic stochastic flows. Ann. Probab. 14 1155–1179.
  • [6] Baxendale, P. H. and Stroock, D. W. (1988). Large deviations and stochastic flows of diffeomorphisms. Probab. Theory Related Fields 80 169–215.
  • [7] Chung, K. L. (1954). Contributions to the theory of Markov chains. II. Trans. Amer. Math. Soc. 76 397–419.
  • [8] Cranston, M. and Le Jan, Y. (1998). Geometric evolution under isotropic stochastic flow. Electron. J. Probab. 3 36 pp. (electronic).
  • [9] Cranston, M. and Le Jan, Y. (2009). A central limit theorem for isotropic flows. Stochastic Process. Appl. 119 3767–3784.
  • [10] Cranston, M., Scheutzow, M. and Steinsaltz, D. (1999). Linear expansion of isotropic Brownian flows. Electron. Comm. Probab. 4 91–101 (electronic).
  • [11] Cranston, M., Scheutzow, M. and Steinsaltz, D. (2000). Linear bounds for stochastic dispersion. Ann. Probab. 28 1852–1869.
  • [12] Darling, R. W. R. (1987). Constructing nonhomeomorphic stochastic flows. Mem. Amer. Math. Soc. 70 vi+97.
  • [13] Derman, C. (1954). A solution to a set of fundamental equations in Markov chains. Proc. Amer. Math. Soc. 5 332–334.
  • [14] Dimitroff, G. (2006). Some properties of isotropic Brownian and Ornstein-Uhlenbeck flows. Ph.D. dissertation, Technischen Univ. Berlin. Available at http://opus.kobv.de/tuberlin/volltexte/2006/1252/.
  • [15] Dimitroff, G. and Scheutzow, M. (2009). Dispersion of volume under the action of isotropic Brownian flows. Stochastic Process. Appl. 119 588–601.
  • [16] Harris, T. E. (1956). The existence of stationary measures for certain Markov processes. In Proc. Third Berkeley Sympos. Math. Statist. Probab. 19541955, Vol. II 113–124. Univ. California Press, Berkeley.
  • [17] Harris, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9 66–89.
  • [18] Harris, T. E. (1981). Brownian motions on the homeomorphisms of the plane. Ann. Probab. 9 232–254.
  • [19] Harris, T. E. (1984). Coalescing and noncoalescing stochastic flows in R1. Stochastic Process. Appl. 17 187–210.
  • [20] Itô, K. (1956). Isotropic random current. In Proc. Third Berkeley Sympos. Math. Statist. Probab. 19541955, Vol. II 125–132. Univ. California Press, Berkeley.
  • [21] Khas’minskii, R. (1960). Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Probab. Appl. 5 179–196.
  • [22] Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge.
  • [23] Le Jan, Y. (1985). On isotropic Brownian motions. Z. Wahrsch. Verw. Gebiete 70 609–620.
  • [24] Le Jan, Y. (1991). Asymptotic properties of isotropic Brownian flows. In Spatial Stochastic Processes. Progress in Probability 19 219–232. Birkhäuser, Boston, MA.
  • [25] Le Jan, Y. and Raimond, O. (2002). Integration of Brownian vector fields. Ann. Probab. 30 826–873.
  • [26] Le Jan, Y. and Raimond, O. (2004). Flows, coalescence and noise. Ann. Probab. 32 1247–1315.
  • [27] Le Jan, Y. and Watanabe, S. (1984). Stochastic flows of diffeomorphisms. In Stochastic Analysis (Katata/Kyoto, 1982). North-Holland Mathematical Library 32 307–332. North-Holland, Amsterdam.
  • [28] Lee, W. C. (1974). Random stirring of the real line. Ann. Probab. 2 580–592.
  • [29] Lindvall, T. (1992). Lectures on the Coupling Method. Wiley, New York.
  • [30] Maruyama, G. and Tanaka, H. (1959). Ergodic property of N-dimensional recurrent Markov processes. Mem. Fac. Sci. Kochi Univ. Ser. A 13 157–172.
  • [31] Matsumoto, H. and Shigekawa, I. (1985). Limit theorems for stochastic flows of diffeomorphisms of jump type. Z. Wahrsch. Verw. Gebiete 69 507–540.
  • [32] Meyn, S. P. and Tweedie, R. L. (1992). Stability of Markovian processes. I: Criteria for discrete-time chains. Adv. in Appl. Probab. 24 542–574.
  • [33] Meyn, S. P. and Tweedie, R. L. (1993). Generalized resolvents and Harris recurrence of Markov processes. In Doeblin and Modern Probability (Blaubeuren, 1991). Contemporary Mathematics 149 227–250. Amer. Math. Soc., Providence, RI.
  • [34] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. II: Continuous-time processes and sampled chains. Adv. in Appl. Probab. 25 487–517.
  • [35] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes. III: Foster-Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab. 25 518–548.
  • [36] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
  • [37] Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4 981–1011.
  • [38] Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43 309–318.
  • [39] Nummelin, E. (1984). General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics 83. Cambridge Univ. Press, Cambridge.
  • [40] Orey, S. (1971). Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Reinhold Mathematical Studies 34. Van Nostrand-Reinhold, London.
  • [41] Raimond, O. (1999). Flots browniens isotropes sur la sphère. Ann. Inst. H. Poincaré Probab. Statist. 35 313–354.
  • [42] Revuz, D. (1984). Markov Chains, 2nd ed. North-Holland Mathematical Library 11. North-Holland, Amsterdam.
  • [43] Tweedie, R. L. (1976). Criteria for classifying general Markov chains. Adv. in Appl. Probab. 8 737–771.
  • [44] Yaglom, A. M. (1957). Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 28 273–320.
  • [45] Zirbel, C. L. (1997). Translation and dispersion of mass by isotropic Brownian flows. Stochastic Process. Appl. 70 1–29.