The Annals of Probability

The speed of a biased random walk on a percolation cluster at high density

Alexander Fribergh

Full-text: Open access


We study the speed of a biased random walk on a percolation cluster on ℤd in function of the percolation parameter p. We obtain a first order expansion of the speed at p=1 which proves that percolating slows down the random walk at least in the case where the drift is along a component of the lattice.

Article information

Ann. Probab., Volume 38, Number 5 (2010), 1717-1782.

First available in Project Euclid: 17 August 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K37: Processes in random environments
Secondary: 60J45: Probabilistic potential theory [See also 31Cxx, 31D05] 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Random walk in random conductances percolation cluster electrical networks Kalikow


Fribergh, Alexander. The speed of a biased random walk on a percolation cluster at high density. Ann. Probab. 38 (2010), no. 5, 1717--1782. doi:10.1214/09-AOP521.

Export citation


  • [1] Alon, N., Spencer, J. H. and Erdös, P. (1992). The Probabilistic Method. Wiley, New York.
  • [2] Ben Arous, G., Fribergh, A., Gantert, N. and Hammond, A. (2010). Biased random walks on Galton–Watson trees with leaves. Ann. Probab. To appear.
  • [3] Berger, N. and Biskup, M. (2007). Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 83–120.
  • [4] Berger, N., Biskup, M., Hoffman, C. E. and Kozma, G. (2008). Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. H. Poincaré Probab. Statist. 44 374–392.
  • [5] Berger, N., Gantert, N. and Peres, Y. (2003). The speed of biased random walk on percolation clusters. Probab. Theory Related Fields 126 221–242.
  • [6] Chen, D. Y. and Zhang, F. X. (2007). On the monotonicity of the speed of random walks on a percolation cluster of trees. Acta Math. Sinica 23 1949–1954.
  • [7] Dhar, D. (1984). Diffusion and drift on percolation networks in an external field. J. Phys. A 17 257–259.
  • [8] Dhar, D. and Stauffer, D. (1998). Drift and trapping in biased diffusion on disordered lattices. Internat. J. Modern Phys. C 9 349–355.
  • [9] Doyle, P. G. and Snell, J. L. (1984). Random Walks and Electric Networks. Carus Mathematical Monographs 22. Math. Assoc. America, Washington, DC.
  • [10] Garet, O. and Marchand, R. (2007). Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35 833–866.
  • [11] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [12] Grimmett, G. R., Kesten, H. and Zhang, Y. (1993). Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 33–44.
  • [13] Kalikow, S. A. (1981). Generalized random walk in a random environment. Ann. Probab. 9 753–768.
  • [14] Lebowitz, J. L. and Mazel, A. E. (1998). Improved Peierls argument for high-dimensional Ising models. J. Stat. Phys. 90 1051–1059.
  • [15] Lyons, R. and Peres, Y. Probability on trees and networks. Available at
  • [16] Lyons, R., Pemantle, R. and Peres, Y. (1996). Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 249–264.
  • [17] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1996). Domination by product measures. Ann. Probab. 24 1711–1726.
  • [18] Mathieu, P. (2008). Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 1025–1046.
  • [19] Mathieu, P. and Piatnitski, A. (2007). Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 2287–2307.
  • [20] Ruelle, D. (1969). Statistical Mechanics: Rigorous Results. Benjamin, New York.
  • [21] Sabot, C. (2004). Ballistic random walks in random environment at low disorder. Ann. Probab. 32 2996–3023.
  • [22] Sznitman, A.-S. (2003). On the anisotropic random walk on the percolation cluster. Comm. Math. Phys. 240 123–148.
  • [23] Sznitman, A.-S. (2000). Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. 2 93–143.
  • [24] Sznitman, A.-S. (2004). Topics in random walks in random environment. In School and Conference on Probability Theory 203–266. Abdus Salam Int. Cent. Theoret. Phys., Trieste.
  • [25] Zeitouni, O. (2004). Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin.