Annals of Probability

Bounds on the constant in the mean central limit theorem

Larry Goldstein

Full-text: Open access


Let X1, …, Xn be independent with zero means, finite variances σ12, …, σn2 and finite absolute third moments. Let Fn be the distribution function of (X1 + ⋯ + Xn)/σ, where σ2 = ∑i=1nσi2, and Φ that of the standard normal. The L1-distance between Fn and Φ then satisfies $$\Vert F_{n}-\Phi\Vert_{1}\le\frac{1}{\sigma^{3}}\sum_{i=1}^{n}E|X_{i}|^{3}.$$

In particular, when X1, …, Xn are identically distributed with variance σ2, we have $$\Vert F_{n}-\Phi\Vert_{1}\le\frac{E|X_{1}|^{3}}{\sigma^{3}\sqrt{n}}  \text{for all } n ∈ ℕ,$$ corresponding to an L1-Berry–Esseen constant of 1.

Article information

Ann. Probab., Volume 38, Number 4 (2010), 1672-1689.

First available in Project Euclid: 8 July 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60F25: $L^p$-limit theorems

Stein’s method Berry–Esseen constant


Goldstein, Larry. Bounds on the constant in the mean central limit theorem. Ann. Probab. 38 (2010), no. 4, 1672--1689. doi:10.1214/10-AOP527.

Export citation


  • [1] Dedecker, J. and Rio, E. (2008). On mean central limit theorems for stationary sequences. Ann. Inst. H. Poincaré Probab. Statist. 44 693–726.
  • [2] Durrett, R. (2005). Probability: Theory and Examples, 3rd ed. Brooks Cole, Belmont, CA.
  • [3] Esseen, C.-G. (1958). On mean central limit theorems. Kungl. Tekn. Högsk. Handl. Stockholm 121 31.
  • [4] Erickson, R. V. (1974). L1 bounds for asymptotic normality of m-dependent sums using Stein’s technique. Ann. Probab. 2 522–529.
  • [5] Goldstein, L. (2004). Normal approximation for hierarchical structures. Ann. Appl. Probab. 14 1950–1969.
  • [6] Goldstein, L. (2005). Berry–Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing. J. Appl. Probab. 42 661–683.
  • [7] Goldstein, L. (2007). L1 bounds in normal approximation. Ann. Probab. 35 1888–1930.
  • [8] Goldstein, L. (2009). A probabilistic proof of the Lindeberg–Feller central limit theorem. Amer. Math. Monthly 116 45–60.
  • [9] Goldstein, L. and Reinert, G. (1997). Stein’s method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7 935–952.
  • [10] Hoeffding, W. (1955). The extrema of the expected value of a function of independent random variables. Ann. Math. Statist. 26 268–275.
  • [11] Ho, S. T. and Chen, L. H. Y. (1978). An Lp bound for the remainder in a combinatorial central limit theorem. Ann. Probab. 6 231–249.
  • [12] Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
  • [13] Lefèvre, C. and Utev, S. (2003). Exact norms of a Stein-type operator and associated stochastic orderings. Probab. Theory Related Fields 127 353–366.
  • [14] Rachev, S. T. (1984). The Monge–Kantorovich transference problem and its stochastic applications. Theory Probab. Appl. 29 647–676.
  • [15] Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. Sixth Berkeley Sympos. Math. Statist. Probab. Vol. II: Probability Theory 583–602. Univ. California Press, Berkeley, CA.
  • [16] Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135–1151.
  • [17] Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series 7. IMS, Hayward, CA.
  • [18] Tyurin, I. (2010). New estimates of the convergence rate in the Lyapunov theorem. Theory Probab. Appl. To appear.
  • [19] Zolotarev, V. M. (1964). On asymptotically best constants in refinements of mean limit theorems. Theory Probab. Appl. 9 268–276.