Annals of Probability

Backward SDEs with constrained jumps and quasi-variational inequalities

Idris Kharroubi, Jin Ma, Huyên Pham, and Jianfeng Zhang

Full-text: Open access


We consider a class of backward stochastic differential equations (BSDEs) driven by Brownian motion and Poisson random measure, and subject to constraints on the jump component. We prove the existence and uniqueness of the minimal solution for the BSDEs by using a penalization approach. Moreover, we show that under mild conditions the minimal solutions to these constrained BSDEs can be characterized as the unique viscosity solution of quasi-variational inequalities (QVIs), which leads to a probabilistic representation for solutions to QVIs. Such a representation in particular gives a new stochastic formula for value functions of a class of impulse control problems. As a direct consequence, this suggests a numerical scheme for the solution of such QVIs via the simulation of the penalized BSDEs.

Article information

Ann. Probab., Volume 38, Number 2 (2010), 794-840.

First available in Project Euclid: 9 March 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 60H30: Applications of stochastic analysis (to PDE, etc.) 35K85: Linear parabolic unilateral problems and linear parabolic variational inequalities [See also 35R35, 49J40]

Backward stochastic differential equation jump-diffusion process jump constraints penalization quasi-variational inequalities impulse control problems viscosity solutions


Kharroubi, Idris; Ma, Jin; Pham, Huyên; Zhang, Jianfeng. Backward SDEs with constrained jumps and quasi-variational inequalities. Ann. Probab. 38 (2010), no. 2, 794--840. doi:10.1214/09-AOP496.

Export citation


  • [1] Barles, G. (1994). Solutions de Viscosité des équations de Hamilton–Jacobi. Mathématiques et Applications 17. Springer, Paris.
  • [2] Barles, G., Buckdahn, R. and Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 57–83.
  • [3] Bensoussan, A. and Lions, J.-L. (1984). Impulse Control and Quasivariational Inequalities. Gauthier-Villars, Montrouge.
  • [4] Bouchard, B. (2009). A stochastic target formulation for optimal switching problems in finite horizon. Stochastics 81 171–197.
  • [5] Buckdahn, R. and Hu, Y. (1998). Hedging contingent claims for a large investor in an incomplete market. Adv. in Appl. Probab. 30 239–255.
  • [6] Crandall, M. G., Ishii, H. and Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 1–67.
  • [7] Cvitanić, J., Karatzas, I. and Soner, H. M. (1998). Backward stochastic differential equations with constraints on the gains-process. Ann. Probab. 26 1522–1551.
  • [8] Dellacherie, C. and Meyer, P.-A. (1975). Probabilités et Potentiel. I–IV. Hermann, Paris.
  • [9] Dellacherie, C. and Meyer, P.-A. (1980). Probabilités et Potentiel. V–VIII. Hermann, Paris.
  • [10] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M. C. (1997). Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 702–737.
  • [11] El Karoui, N. and Quenez, M.-C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29–66.
  • [12] Fleming, W. H. and Soner, H. M. (2006). Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25. Springer, New York.
  • [13] Hamadène, S. and Ouknine, Y. (2003). Reflected backward stochastic differential equation with jumps and random obstacle. Electron. J. Probab. 8 1–20.
  • [14] Ishii, K. (1993). Viscosity solutions of nonlinear second order elliptic PDEs associated with impulse control problems. Funkcial. Ekvac. 36 123–141.
  • [15] Ma, J. and Zhang, J. (2002). Path regularity for solutions of backward stochastic differential equations. Probab. Theory Related Fields 122 163–190.
  • [16] Meyer, P.-A. and Zheng, W. A. (1984). Tightness criteria for laws of semimartingales. Ann. Inst. H. Poincaré Probab. Statist. 20 353–372.
  • [17] Øksendal, B. and Sulem, A. (2007). Applied Stochastic Control of Jump Diffusions, 2nd ed. Springer, Berlin.
  • [18] Peng, S. (1999). Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer’s type. Probab. Theory Related Fields 113 473–499.
  • [19] Peng, S. and Xu, M. (2007). Constrained BSDE and viscosity solutions of variation inequalities. Preprint.
  • [20] Royer, M. (2006). Backward stochastic differential equations with jumps and related non-linear expectations. Stochastic Process. Appl. 116 1358–1376.
  • [21] Tang, S. J. and Li, X. J. (1994). Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 1447–1475.
  • [22] Tang, S. J. and Yong, J. M. (1993). Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach. Stochastics Stochastics Rep. 45 145–176.