The Annals of Probability

The asymptotic shape theorem for generalized first passage percolation

Michael Björklund

Full-text: Open access

Abstract

We generalize the asymptotic shape theorem in first passage percolation on ℤd to cover the case of general semimetrics. We prove a structure theorem for equivariant semimetrics on topological groups and an extended version of the maximal inequality for ℤd-cocycles of Boivin and Derriennic in the vector-valued case. This inequality will imply a very general form of Kingman’s subadditive ergodic theorem. For certain classes of generalized first passage percolation, we prove further structure theorems and provide rates of convergence for the asymptotic shape theorem. We also establish a general form of the multiplicative ergodic theorem of Karlsson and Ledrappier for cocycles with values in separable Banach spaces with the Radon–Nikodym property.

Article information

Source
Ann. Probab., Volume 38, Number 2 (2010), 632-660.

Dates
First available in Project Euclid: 9 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aop/1268143529

Digital Object Identifier
doi:10.1214/09-AOP491

Mathematical Reviews number (MathSciNet)
MR2642888

Zentralblatt MATH identifier
1194.47013

Subjects
Primary: 47A35: Ergodic theory [See also 28Dxx, 37Axx] 82B43: Percolation [See also 60K35]

Keywords
First passage percolation cocycles subadditive ergodic theory

Citation

Björklund, Michael. The asymptotic shape theorem for generalized first passage percolation. Ann. Probab. 38 (2010), no. 2, 632--660. doi:10.1214/09-AOP491. https://projecteuclid.org/euclid.aop/1268143529


Export citation

References

  • [1] Alexander, K. S. (1993). A note on some rates of convergence in first-passage percolation. Ann. Appl. Probab. 3 81–90.
  • [2] Arcozzi, N., Rochberg, R., Sawyer, E. and Wick, B. D. (2008). Function spaces related to the Dirichlet space. Preprint.
  • [3] Arnold, L. (1998). Random Dynamical Systems. Springer, Berlin.
  • [4] Benjamini, I., Kalai, G. and Schramm, O. (2003). First passage percolation has sublinear distance variance. Ann. Probab. 31 1970–1978.
  • [5] Björklund, M. A ratio multiplicative ergodic theorem. Preprint.
  • [6] Bochner, S. and Taylor, A. E. (1938). Linear functionals on certain spaces of abstractly-valued functions. Ann. of Math. (2) 39 913–944.
  • [7] Boivin, D. (1990). First passage percolation: The stationary case. Probab. Theory Related Fields 86 491–499.
  • [8] Boivin, D. and Derriennic, Y. (1991). The ergodic theorem for additive cocycles of Zd or Rd. Ergodic Theory Dynam. Systems 11 19–39.
  • [9] Cembranos, P. and Mendoza, J. (1997). Banach Spaces of Vector-valued Functions. Lecture Notes in Math. 1676. Springer, Berlin.
  • [10] Cox, J. T. and Durrett, R. (1981). Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9 583–603.
  • [11] Broise, M., Déniel, Y. and Derriennic, Y. (1989). Réarrangement, inégalités maximales et théorèmes ergodiques fractionnaires. Ann. Inst. Fourier (Grenoble) 39 689–714.
  • [12] Diestel, J. and Uhl, J. J., Jr. (1977). Vector Measures. Amer. Math. Soc., Providence, RI.
  • [13] Dunford, N. and Schwartz, J. T. (1988). Linear Operators. Part I. Wiley, New York.
  • [14] Furstenberg, H. and Kesten, H. (1960). Products of random matrices. Ann. Math. Statist 31 457–469.
  • [15] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2 652–680.
  • [16] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, CA 61–110. Springer, New York.
  • [17] Häggström, O. and Meester, R. (1995). Asymptotic shapes for stationary first passage percolation. Ann. Probab. 23 1511–1522.
  • [18] Karlsson, A. and Ledrappier, F. (2006). On laws of large numbers for random walks. Ann. Probab. 34 1693–1706.
  • [19] Kesten, H. (1993). On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 296–338.
  • [20] Kesten, H. (1986). Aspects of first passage percolation. In École D’été de Probabilités de Saint-Flour, XIV. Lecture Notes in Math. 1180 125–264. Springer, Berlin.
  • [21] Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883–909.
  • [22] Krengel, U. (1985). Ergodic Theorems. de Gruyter, Berlin.
  • [23] Lorentz, G. G. (1950). Some new functional spaces. Ann. of Math. (2) 51 37–55.
  • [24] Oseledec, V. I. (1968). A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. Trudy Moskov. Mat. Obsc. 19 179–210.
  • [25] Phillips, R. S. (1943). On weakly compact subsets of a Banach space. Amer. J. Math. 65 108–136.
  • [26] Wiener, N. (1939). The ergodic theorem. Duke Math. J. 5 1–18.
  • [27] Zhang, Y. (2008). On the concentration and convergence rate with a moment condition in first passage percolation. Preprint.