The Annals of Probability

Hiding a drift

Miklós Rásonyi, Walter Schachermayer, and Richard Warnung

Full-text: Open access

Abstract

In this article we consider a Brownian motion with drift of the form

dSt=μtdt+dBt  for t≥0,

with a specific nontrivial (μt)t≥0, predictable with respect to $\mathbb{F}^{B}$, the natural filtration of the Brownian motion B=(Bt)t≥0. We construct a process H=(Ht)t≥0, also predictable with respect to $\mathbb{F}^{B}$, such that ((HS)t)t≥0 is a Brownian motion in its own filtration. Furthermore, for any δ>0, we refine this construction such that the drift (μt)t≥0 only takes values in ]μδ, μ+δ[, for fixed μ>0.

Article information

Source
Ann. Probab. Volume 37, Number 6 (2009), 2459-2479.

Dates
First available in Project Euclid: 16 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1258380795

Digital Object Identifier
doi:10.1214/09-AOP469

Mathematical Reviews number (MathSciNet)
MR2573564

Zentralblatt MATH identifier
1193.60073

Subjects
Primary: 60H05: Stochastic integrals 60G44: Martingales with continuous parameter
Secondary: 60G05: Foundations of stochastic processes 60H10: Stochastic ordinary differential equations [See also 34F05]

Keywords
Brownian motion with drift stochastic integral enlargement of filtration Lévy transform

Citation

Rásonyi, Miklós; Schachermayer, Walter; Warnung, Richard. Hiding a drift. Ann. Probab. 37 (2009), no. 6, 2459--2479. doi:10.1214/09-AOP469. https://projecteuclid.org/euclid.aop/1258380795


Export citation

References

  • [1] Atlan, M., Geman, H., Madan, D. B. and Yor, M. (2007). Correlation and the pricing of risks. Annals of Finance 3 411–453.
  • [2] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
  • [3] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York.
  • [4] Shiryaev, A. N. (2008). Optimal Stopping Rules. Stochastic Modelling and Applied Probability 8. Springer, Berlin.