The Annals of Probability

Bootstrap percolation in three dimensions

József Balogh, Béla Bollobás, and Robert Morris

Full-text: Open access

Abstract

By bootstrap percolation we mean the following deterministic process on a graph G. Given a set A of vertices “infected” at time 0, new vertices are subsequently infected, at each time step, if they have at least r∈ℕ previously infected neighbors. When the set A is chosen at random, the main aim is to determine the critical probability pc(G, r) at which percolation (infection of the entire graph) becomes likely to occur. This bootstrap process has been extensively studied on the d-dimensional grid [n]d: with 2≤rd fixed, it was proved by Cerf and Cirillo (for d=r=3), and by Cerf and Manzo (in general), that

\[p_{c}([n]^{d},r)=\Theta\biggl(\frac{1}{\log_{(r-1)}n}\biggr)^{d-r+1}\],

where log(r) is an r-times iterated logarithm. However, the exact threshold function is only known in the case d=r=2, where it was shown by Holroyd to be $(1+o(1))\frac{\pi^{2}}{18\log n}$. In this paper we shall determine the exact threshold in the crucial case d=r=3, and lay the groundwork for solving the problem for all fixed d and r.

Article information

Source
Ann. Probab. Volume 37, Number 4 (2009), 1329-1380.

Dates
First available in Project Euclid: 21 July 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1248182140

Digital Object Identifier
doi:10.1214/08-AOP433

Mathematical Reviews number (MathSciNet)
MR2546747

Zentralblatt MATH identifier
1187.60082

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60C05: Combinatorial probability

Keywords
Bootstrap percolation sharp threshold

Citation

Balogh, József; Bollobás, Béla; Morris, Robert. Bootstrap percolation in three dimensions. Ann. Probab. 37 (2009), no. 4, 1329--1380. doi:10.1214/08-AOP433. https://projecteuclid.org/euclid.aop/1248182140


Export citation

References

  • [1] Adler, J. and Lev, U. (2003). Bootstrap percolation: Visualizations and applications. Braz. J. Phys. 33 641–644.
  • [2] Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. J. Phys. A 21 3801–3813.
  • [3] Balogh, J. and Bollobás, B. (2006). Bootstrap percolation on the hypercube. Probab. Theory Related Fields 134 624–648.
  • [4] Balogh, J. and Bollobás, B. (2003). Sharp thresholds in bootstrap percolation. Phys. A 326 305–312.
  • [5] Balogh, J., Bollobás, B. and Morris, R. (2009). Bootstrap percolation on the hypercube. Unpublished manuscript.
  • [6] Balogh, J., Bollobás, B. and Morris, R. (2009). Majority bootstrap percolation on the hypercube. Combin. Probab. Comput. 18 17–51.
  • [7] Balogh, J., Bollobás, B., Duminil-Copin, H. and Morris, R. (2009). The sharp metastability threshold for r-neighbour bootstrap percolation. Unpublished manuscript.
  • [8] Balogh, J., Peres, Y. and Pete, G. (2006). Bootstrap percolation on infinite trees and non-amenable groups. Combin. Probab. Comput. 15 715–730.
  • [9] Balogh, J. and Pete, G. (1998). Random disease on the square grid. Random Structures Algorithms 13 409–422.
  • [10] Balogh, J. and Pittel, B. G. (2007). Bootstrap percolation on the random regular graph. Random Structures Algorithms 30 257–286.
  • [11] van den Berg, J. and Kesten, H. (1985). Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 556–569.
  • [12] Cerf, R. and Cirillo, E. N. M. (1999). Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab. 27 1837–1850.
  • [13] Cerf, R. and Manzo, F. (2002). The threshold regime of finite volume bootstrap percolation. Stochastic Process. Appl. 101 69–82.
  • [14] Chalupa, J., Leath, P. L. and Reich, G. R. (1979). Bootstrap percolation on a Bethe latice. J. Phys. C 12 L31–L35.
  • [15] Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495–518.
  • [16] Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89–103.
  • [17] Friedgut, E. and Kalai, G. (1996). Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 2993–3002.
  • [18] Gradshteyn, I. S. and Ryzhik, I. M. (1965). Table of Integrals, Series, and Products. Academic Press, New York.
  • [19] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields 125 195–224.
  • [20] Holroyd, A. E. (2006). The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. 11 418–433 (electronic).
  • [21] Janson, S. (2009). On percolation in random graphs with given vertex degrees. Electron. J. Probab. 14 87–118.
  • [22] Morris, R. (2009). Glauber dynamics in high dimensions. Unpublished manuscript.
  • [23] Reimer, D. (2000). Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput. 9 27–32.
  • [24] Schonmann, R. H. (1990). Finite size scaling behavior of a biased majority rule cellular automaton. Phys. A 167 619–627.
  • [25] Schonmann, R. H. (1992). On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20 174–193.
  • [26] van Enter, A. C. D. (1987). Proof of Straley’s argument for bootstrap percolation. J. Statist. Phys. 48 943–945.
  • [27] van Enter, A. C. D., Adler, J. and Duarte, J. A. M. S. (1990). Finite-size effects for some bootstrap percolation models. J. Statist. Phys. 60 323–332.
  • [28] von Neumann, J. (1966). Theory of Self-Reproducing Automata. Univ. Illinois Press, Urbana.