Annals of Probability

Entropic measure and Wasserstein diffusion

Max-K. von Renesse and Karl-Theodor Sturm

Full-text: Open access


We construct a new random probability measure on the circle and on the unit interval which in both cases has a Gibbs structure with the relative entropy functional as Hamiltonian. It satisfies a quasi-invariance formula with respect to the action of smooth diffeomorphism of the sphere and the interval, respectively. The associated integration by parts formula is used to construct two classes of diffusion processes on probability measures (on the sphere or the unit interval) by Dirichlet form methods. The first one is closely related to Malliavin’s Brownian motion on the homeomorphism group. The second one is a probability valued stochastic perturbation of the heat flow, whose intrinsic metric is the quadratic Wasserstein distance. It may be regarded as the canonical diffusion process on the Wasserstein space.

Article information

Ann. Probab., Volume 37, Number 3 (2009), 1114-1191.

First available in Project Euclid: 19 June 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J60: Diffusion processes [See also 58J65] 60G57: Random measures 35R60: Partial differential equations with randomness, stochastic partial differential equations [See also 60H15] 47D07: Markov semigroups and applications to diffusion processes {For Markov processes, see 60Jxx} 60H15: Stochastic partial differential equations [See also 35R60] 60J45: Probabilistic potential theory [See also 31Cxx, 31D05] 58J65: Diffusion processes and stochastic analysis on manifolds [See also 35R60, 60H10, 60J60]

Wasserstein space optimal transport entropy Dirichlet process change of variable formula measure-valued diffusion Brownian motion on the homeomorphism group stochastic heat flow Wasserstein diffusion entropic measure


von Renesse, Max-K.; Sturm, Karl-Theodor. Entropic measure and Wasserstein diffusion. Ann. Probab. 37 (2009), no. 3, 1114--1191. doi:10.1214/08-AOP430.

Export citation


  • [1] Airault, H. and Malliavin, P. (2006). Quasi-invariance of Brownian measures on the group of circle homeomorphisms and infinite-dimensional Riemannian geometry. J. Funct. Anal. 241 99–142.
  • [2] Airault, H., Malliavin, P. and Thalmaier, A. (2004). Canonical Brownian motion on the space of univalent functions and resolution of Beltrami equations by a continuity method along stochastic flows. J. Math. Pures Appl. (9) 83 955–1018.
  • [3] Airault, H. and Ren, J. (2002). Modulus of continuity of the canonic Brownian motion “on the group of diffeomorphisms of the circle.” J. Funct. Anal. 196 395–426.
  • [4] Albeverio, S., Kondratiev, Y. G. and Röckner, M. (1998). Analysis and geometry on configuration spaces. J. Funct. Anal. 154 444–500.
  • [5] Andres, S. and von Renesse, M.-K. (2007). Particle approximation of the Wasserstein diffusion. Preprint.
  • [6] Bertoin, J. (1999). Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math. 1717 1–91. Springer, Berlin.
  • [7] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 375–417.
  • [8] Cordero-Erausquin, D., McCann, R. J. and Schmuckenschläger, M. (2001). A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 219–257.
  • [9] Dawson, D. A. (1993). Measure-valued Markov processes. In École D’Été de Probabilités de Saint-Flour XXI—1991. Lecture Notes in Math. 1541 1–260. Springer, Berlin.
  • [10] Doering, M. and Stannat, W. (2007). The logarithmic Sobolev inequality for the Wasserstein diffusion. Preprint.
  • [11] Émery, M. and Yor, M. (2004). A parallel between Brownian bridges and gamma bridges. Publ. Res. Inst. Math. Sci. 40 669–688.
  • [12] Fang, S. (2002). Canonical Brownian motion on the diffeomorphism group of the circle. J. Funct. Anal. 196 162–179.
  • [13] Fang, S. (2004). Solving stochastic differential equations on Homeo(S1). J. Funct. Anal. 216 22–46.
  • [14] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin.
  • [15] Handa, K. (2002). Quasi-invariance and reversibility in the Fleming–Viot process. Probab. Theory Related Fields 122 545–566.
  • [16] Hino, M. and Ramírez, J. A. (2003). Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31 1254–1295.
  • [17] Jordan, R., Kinderlehrer, D. and Otto, F. (1998). The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 1–17 (electronic).
  • [18] Kingman, J. F. C. (1993). Poisson Processes. Oxford Studies in Probability 3. Oxford Univ. Press, New York.
  • [19] Lott, J. (2008). Some geometric calculations on Wasserstein space. Comm. Math. Phys. 277 423–437.
  • [20] Malliavin, P. (1999). The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Paris Sér. I Math. 329 325–329.
  • [21] McCann, R. J. (1997). A convexity principle for interacting gases. Adv. Math. 128 153–179.
  • [22] Otto, F. (2001). The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 101–174.
  • [23] Otto, F. and Villani, C. (2000). Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 361–400.
  • [24] Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics, I: Functional Analysis, 2nd ed. Academic Press, New York.
  • [25] von Renesse, M.-K. and Sturm, K.-T. (2005). Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58 923–940.
  • [26] von Renesse, M.-K., Zambotti, L. and Yor, M. (2008). Quasi-invariance properties of a class of subordinators. Stochastic Process. Appl. 118 2038–2057.
  • [27] Röckner, M. and Schied, A. (1999). Rademacher’s theorem on configuration spaces and applications. J. Funct. Anal. 169 325–356.
  • [28] Schied, A. (1997). Geometric aspects of Fleming–Viot and Dawson–Watanabe processes. Ann. Probab. 25 1160–1179.
  • [29] Sturm, K.-T. (2006). On the geometry of metric measure spaces. I. Acta Math. 196 65–131.
  • [30] Sturm, K.-T. (2008). Entropic measure in higher dimensions. Preprint.
  • [31] Tsilevich, N., Vershik, A. and Yor, M. (2001). An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process. J. Funct. Anal. 185 274–296.
  • [32] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI.