Annals of Probability

Spectra of random linear combinations of matrices defined via representations and Coxeter generators of the symmetric group

Steven N. Evans

Full-text: Open access


We consider the asymptotic behavior as n→∞ of the spectra of random matrices of the form $$\frac{1}{\sqrt{n-1}}\sum_{k=1}^{n-1}Z_{nk}\rho_{n}\bigl ((k,k+1)\bigr),$$ where for each n the random variables Znk are i.i.d. standard Gaussian and the matrices ρn((k, k+1)) are obtained by applying an irreducible unitary representation ρn of the symmetric group on {1, 2, …, n} to the transposition (k, k+1) that interchanges k and k+1 [thus, ρn((k, k+1)) is both unitary and self-adjoint, with all eigenvalues either +1 or −1]. Irreducible representations of the symmetric group on {1, 2, …, n} are indexed by partitions λn of n. A consequence of the results we establish is that if λn,1λn,2≥⋯≥0 is the partition of n corresponding to ρn, μn,1μn,2≥⋯≥0 is the corresponding conjugate partition of n (i.e., the Young diagram of μn is the transpose of the Young diagram of λn), limn→∞λn,i/n=pi for each i≥1, and limn→∞μn,j/n=qj for each j≥1, then the spectral measure of the resulting random matrix converges in distribution to a random probability measure that is Gaussian with random mean θZ and variance 1−θ2, where θ is the constant ∑ipi2−∑jqj2 and Z is a standard Gaussian random variable.

Article information

Ann. Probab., Volume 37, Number 2 (2009), 726-741.

First available in Project Euclid: 30 April 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 15A52 60F99: None of the above, but in this section
Secondary: 20C30: Representations of finite symmetric groups

Random matrix eigenvalue irreducible representation transposition Coxeter generator Hermite polynomial Wiener integral character ratio Young’s orthogonal representation domino tiling


Evans, Steven N. Spectra of random linear combinations of matrices defined via representations and Coxeter generators of the symmetric group. Ann. Probab. 37 (2009), no. 2, 726--741. doi:10.1214/08-AOP418.

Export citation


  • [1] Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611–677. With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author.
  • [2] Bryc, W., Dembo, A. and Jiang, T. (2006). Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 1–38.
  • [3] Borodin, A., Okounkov, A. and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 481–515 (electronic).
  • [4] Corteel, S., Goupil, A. and Schaeffer, G. (2004). Content evaluation and class symmetric functions. Adv. Math. 188 315–336.
  • [5] Diaconis, P. (2003). Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40 155–178 (electronic).
  • [6] Frobenius, F. G. (1900). Über die Charaktere der symmetrischen Gruppe. Sitz. Konig. Preuss. Akad. Wissen. 516–534. Collected in Gesammeltte Abhandlungen III (1968), 148–166. Springer, Heidelberg.
  • [7] Fulton, W. and Harris, J. (1991). Representation Theory. Graduate Texts in Mathematics 129. Springer, New York.
  • [8] Fulton, W. (1997). Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35. Cambridge Univ. Press, Cambridge.
  • [9] Fulman, J. (2005). Stein’s method and Plancherel measure of the symmetric group. Trans. Amer. Math. Soc. 357 555–570 (electronic).
  • [10] Fulman, J. (2006). An inductive proof of the Berry–Esseen theorem for character ratios. Ann. Comb. 10 319–332.
  • [11] Fulman, J. (2006). Martingales and character ratios. Trans. Amer. Math. Soc. 358 4533–4552 (electronic).
  • [12] Greene, C. (1992). A rational-function identity related to the Murnaghan–Nakayama formula for the characters of Sn. J. Algebraic Combin. 1 235–255.
  • [13] Hammond, C. and Miller, S. J. (2005). Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18 537–566.
  • [14] Hora, A. (1998). Central limit theorem for the adjacency operators on the infinite symmetric group. Comm. Math. Phys. 195 405–416.
  • [15] Houdré, C., Pérez-Abreu, V. and Üstünel, A. S. (1994). Chaos Expansions, Multiple Wiener–Itô Integrals and Their Applications. CRC Press, Boca Raton, FL.
  • [16] Ingram, R. E. (1950). Some characters of the symmetric group. Proc. Amer. Math. Soc. 1 358–369.
  • [17] Ivanov, V. and Olshanski, G. (2002). Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In Symmetric Functions 2001: Surveys of Developments and Perspectives. NATO Sci. Ser. II Math. Phys. Chem. 74 93–151. Kluwer Academic, Dordrecht.
  • [18] James, G. and Kerber, A. (1981). The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications 16. Addison-Wesley, Reading, MA. With a foreword by P. M. Cohn, with an introduction by Gilbert de B. Robinson.
  • [19] Kerov, S. (1993). Gaussian limit for the Plancherel measure of the symmetric group. C. R. Acad. Sci. Paris Sér. I Math. 316 303–308.
  • [20] Lassalle, M. (2005). Explicitation of characters of the symmetric group. C. R. Math. Acad. Sci. Paris 341 529–534.
  • [21] Littlewood, D. E. (2006). The Theory of Group Characters and Matrix Representations of Groups. Amer. Math. Soc., Providence, RI. Reprint of the second (1950) edition.
  • [22] Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials, 2nd ed. Oxford Mathematical Monographs. Clarendon, Oxford. With contributions by A. Zelevinsky, Oxford Science Publications.
  • [23] Mehta, M. L. (2004). Random Matrices, 3rd ed. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam.
  • [24] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin.
  • [25] Rutherford, D. E. (1948). Substitutional Analysis. Edinburgh Univ. Press, Edinburgh.
  • [26] Sagan, B. E. (2001). The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed. Graduate Texts in Mathematics 203. Springer, New York.
  • [27] Simon, B. (1996). Representations of Finite and Compact Groups. Graduate Studies in Mathematics 10. Amer. Math. Soc., Providence, RI.
  • [28] Śniady, P. (2006). Gaussian fluctuations of characters of symmetric groups and of Young diagrams. Probab. Theory Related Fields 136 263–297.
  • [29] Shao, Q.-M. and Su, Z.-G. (2006). The Berry–Esseen bound for character ratios. Proc. Amer. Math. Soc. 134 2153–2159 (electronic).
  • [30] Stanley, R. P. (1999). Enumerative combinatorics. Cambridge Studies in Advanced Mathematics 62. Cambridge Univ. Press, Cambridge.
  • [31] Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 325–327.