## Annals of Probability

### Spectra of random linear combinations of matrices defined via representations and Coxeter generators of the symmetric group

Steven N. Evans

#### Abstract

We consider the asymptotic behavior as n→∞ of the spectra of random matrices of the form $$\frac{1}{\sqrt{n-1}}\sum_{k=1}^{n-1}Z_{nk}\rho_{n}\bigl ((k,k+1)\bigr),$$ where for each n the random variables Znk are i.i.d. standard Gaussian and the matrices ρn((k, k+1)) are obtained by applying an irreducible unitary representation ρn of the symmetric group on {1, 2, …, n} to the transposition (k, k+1) that interchanges k and k+1 [thus, ρn((k, k+1)) is both unitary and self-adjoint, with all eigenvalues either +1 or −1]. Irreducible representations of the symmetric group on {1, 2, …, n} are indexed by partitions λn of n. A consequence of the results we establish is that if λn,1λn,2≥⋯≥0 is the partition of n corresponding to ρn, μn,1μn,2≥⋯≥0 is the corresponding conjugate partition of n (i.e., the Young diagram of μn is the transpose of the Young diagram of λn), limn→∞λn,i/n=pi for each i≥1, and limn→∞μn,j/n=qj for each j≥1, then the spectral measure of the resulting random matrix converges in distribution to a random probability measure that is Gaussian with random mean θZ and variance 1−θ2, where θ is the constant ∑ipi2−∑jqj2 and Z is a standard Gaussian random variable.

#### Article information

Source
Ann. Probab., Volume 37, Number 2 (2009), 726-741.

Dates
First available in Project Euclid: 30 April 2009

https://projecteuclid.org/euclid.aop/1241099927

Digital Object Identifier
doi:10.1214/08-AOP418

Mathematical Reviews number (MathSciNet)
MR2510022

Zentralblatt MATH identifier
1168.15017

Subjects
Primary: 15A52 60F99: None of the above, but in this section
Secondary: 20C30: Representations of finite symmetric groups

#### Citation

Evans, Steven N. Spectra of random linear combinations of matrices defined via representations and Coxeter generators of the symmetric group. Ann. Probab. 37 (2009), no. 2, 726--741. doi:10.1214/08-AOP418. https://projecteuclid.org/euclid.aop/1241099927

#### References

• [1] Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611–677. With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author.
• [2] Bryc, W., Dembo, A. and Jiang, T. (2006). Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab. 34 1–38.
• [3] Borodin, A., Okounkov, A. and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 481–515 (electronic).
• [4] Corteel, S., Goupil, A. and Schaeffer, G. (2004). Content evaluation and class symmetric functions. Adv. Math. 188 315–336.
• [5] Diaconis, P. (2003). Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40 155–178 (electronic).
• [6] Frobenius, F. G. (1900). Über die Charaktere der symmetrischen Gruppe. Sitz. Konig. Preuss. Akad. Wissen. 516–534. Collected in Gesammeltte Abhandlungen III (1968), 148–166. Springer, Heidelberg.
• [7] Fulton, W. and Harris, J. (1991). Representation Theory. Graduate Texts in Mathematics 129. Springer, New York.
• [8] Fulton, W. (1997). Young Tableaux: With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35. Cambridge Univ. Press, Cambridge.
• [9] Fulman, J. (2005). Stein’s method and Plancherel measure of the symmetric group. Trans. Amer. Math. Soc. 357 555–570 (electronic).
• [10] Fulman, J. (2006). An inductive proof of the Berry–Esseen theorem for character ratios. Ann. Comb. 10 319–332.
• [11] Fulman, J. (2006). Martingales and character ratios. Trans. Amer. Math. Soc. 358 4533–4552 (electronic).
• [12] Greene, C. (1992). A rational-function identity related to the Murnaghan–Nakayama formula for the characters of Sn. J. Algebraic Combin. 1 235–255.
• [13] Hammond, C. and Miller, S. J. (2005). Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18 537–566.
• [14] Hora, A. (1998). Central limit theorem for the adjacency operators on the infinite symmetric group. Comm. Math. Phys. 195 405–416.
• [15] Houdré, C., Pérez-Abreu, V. and Üstünel, A. S. (1994). Chaos Expansions, Multiple Wiener–Itô Integrals and Their Applications. CRC Press, Boca Raton, FL.
• [16] Ingram, R. E. (1950). Some characters of the symmetric group. Proc. Amer. Math. Soc. 1 358–369.
• [17] Ivanov, V. and Olshanski, G. (2002). Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In Symmetric Functions 2001: Surveys of Developments and Perspectives. NATO Sci. Ser. II Math. Phys. Chem. 74 93–151. Kluwer Academic, Dordrecht.
• [18] James, G. and Kerber, A. (1981). The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications 16. Addison-Wesley, Reading, MA. With a foreword by P. M. Cohn, with an introduction by Gilbert de B. Robinson.
• [19] Kerov, S. (1993). Gaussian limit for the Plancherel measure of the symmetric group. C. R. Acad. Sci. Paris Sér. I Math. 316 303–308.
• [20] Lassalle, M. (2005). Explicitation of characters of the symmetric group. C. R. Math. Acad. Sci. Paris 341 529–534.
• [21] Littlewood, D. E. (2006). The Theory of Group Characters and Matrix Representations of Groups. Amer. Math. Soc., Providence, RI. Reprint of the second (1950) edition.
• [22] Macdonald, I. G. (1995). Symmetric Functions and Hall Polynomials, 2nd ed. Oxford Mathematical Monographs. Clarendon, Oxford. With contributions by A. Zelevinsky, Oxford Science Publications.
• [23] Mehta, M. L. (2004). Random Matrices, 3rd ed. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam.
• [24] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Springer, Berlin.
• [25] Rutherford, D. E. (1948). Substitutional Analysis. Edinburgh Univ. Press, Edinburgh.
• [26] Sagan, B. E. (2001). The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed. Graduate Texts in Mathematics 203. Springer, New York.
• [27] Simon, B. (1996). Representations of Finite and Compact Groups. Graduate Studies in Mathematics 10. Amer. Math. Soc., Providence, RI.
• [28] Śniady, P. (2006). Gaussian fluctuations of characters of symmetric groups and of Young diagrams. Probab. Theory Related Fields 136 263–297.
• [29] Shao, Q.-M. and Su, Z.-G. (2006). The Berry–Esseen bound for character ratios. Proc. Amer. Math. Soc. 134 2153–2159 (electronic).
• [30] Stanley, R. P. (1999). Enumerative combinatorics. Cambridge Studies in Advanced Mathematics 62. Cambridge Univ. Press, Cambridge.
• [31] Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 325–327.