The Annals of Probability

Edge percolation on a random regular graph of low degree

Boris Pittel

Full-text: Open access

Abstract

Consider a uniformly random regular graph of a fixed degree d≥3, with n vertices. Suppose that each edge is open (closed), with probability p(q=1−p), respectively. In 2004 Alon, Benjamini and Stacey proved that p*=(d−1)−1 is the threshold probability for emergence of a giant component in the subgraph formed by the open edges. In this paper we show that the transition window around p* has width roughly of order n−1/3. More precisely, suppose that p=p(n) is such that ω:=n1/3|pp*|→∞. If p<p*, then with high probability (whp) the largest component has O((pp*)−2log n) vertices. If p>p*, and log ω≫log log n, then whp the largest component has about n(1−(+q)d)≍n(pp*) vertices, and the second largest component is of size (pp*)−2(log n)1+o(1), at most, where π=(+q)d−1, π∈(0, 1). If ω is merely polylogarithmic in n, then whp the largest component contains n2/3+o(1) vertices.

Article information

Source
Ann. Probab., Volume 36, Number 4 (2008), 1359-1389.

Dates
First available in Project Euclid: 29 July 2008

Permanent link to this document
https://projecteuclid.org/euclid.aop/1217360972

Digital Object Identifier
doi:10.1214/07-AOP361

Mathematical Reviews number (MathSciNet)
MR2435852

Zentralblatt MATH identifier
1160.05054

Subjects
Primary: 05432 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B27: Critical phenomena 60G42: Martingales with discrete parameter 82C20: Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs

Keywords
Percolation random graph threshold probability transition window giant component

Citation

Pittel, Boris. Edge percolation on a random regular graph of low degree. Ann. Probab. 36 (2008), no. 4, 1359--1389. doi:10.1214/07-AOP361. https://projecteuclid.org/euclid.aop/1217360972


Export citation

References

  • [1] Aldous, D. J. and Pittel, B. (2000). On a random graph with immigrating vertices: Emergence of the giant component. Random Structures Algorithms 17 79–102.
  • [2] Alon, N., Benjamini, I. and Stacey, A. (2004). Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32 1727–1745.
  • [3] Aronson, J., Frieze, A. and Pittel, B. G. (1998). Maximum matchings in sparse random graphs: Karp–Sipser revisited. Random Structures Algorithms 12 111–177.
  • [4] Balogh, J. and Pittel, B. (2007). Bootstrap percolation on a random regular graph. Random Structures Algorithms 30 257–286.
  • [5] Bender, E. A. and Canfield, E. R. (1978). The asymptotic number of labelled graphs with given degree sequences. J. Combin. Theory Ser. A 24 296–307.
  • [6] Benjamini, I. (2002). Private communication.
  • [7] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin. 1 311–316.
  • [8] Bollobás, B. (1982). The asymptotic number of unlabelled regular graphs. J. London Math. Soc. 89 201–206.
  • [9] Bollobás, B. (1984). The evolution of random graphs. Trans. Amer. Math. Soc. 286 257–274.
  • [10] Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Univ. Press.
  • [11] Borgs, C., Chayes, J. T., van der Hofstad, R., Slade, G. and Spencer, J. (2005). Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Structures Algorithms 37 137–184.
  • [12] Borgs, C., Chayes, J. T., van der Hofstad, R., Slade, G. and Spencer, J. (2005). Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33 1886–1944.
  • [13] Durrett, R. (1985). Some general results concerning the critical exponents of percolation processes. Z. Wahrsch. Verw. Gebiete 69 421–437.
  • [14] Durrett, R. (2005). Probability: Theory and Examples, 3rd ed. Wadsworth and Brooks/Cole, Pacific Grove, CA.
  • [15] Durrett, R. (2006). Random Graph Dynamics. Cambridge Univ. Press.
  • [16] Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5 17–61.
  • [17] Grimmett, G. (1989). Percolation. Springer, New York.
  • [18] Janson, S., Łuczak, T., Knuth, D. E. and Pittel, B. (1993). The birth of the giant component. Random Structures Algorithms 4 233–358.
  • [19] Łuczak, T. (1990). Component behavior near the critical point of the random graph process. Random Structures Algorithms 1 287–310.
  • [20] Łuczak, T. (1990). On the number of sparse connected graphs. Random Structures Algorithms 1 171–174.
  • [21] Łuczak, T., Pittel, B. and Wierman, J. C. (1994). The structure of random graph near the point of the phase transition. Trans. Amer. Math. Soc. 341 721–748.
  • [22] Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures Algorithms 6 161–179.
  • [23] Molloy, M. and Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combin. Probab. Comput. 7 295–305.
  • [24] Moon, J. W. (1970). Counting Labelled Trees. Canadian Mathematics Congress, Montreal.
  • [25] Pittel, B. (2001). On the largest component of the random graph at a near critical stage. J. Combin. Theory Ser. B 82 237–269.
  • [26] Pittel, B., Spencer, J. and Wormald, N. (1996). Sudden emergence of a giant k-core in a random graph. J. Combin. Theory Ser. B 67 111–151.
  • [27] Wormald, N. C. (1995). Differential equations for random processes and random graphs. Ann. Appl. Probab. 5 1217–1235.