The Annals of Probability

K-processes, scaling limit and aging for the trap model in the complete graph

L. R. G. Fontes and P. Mathieu

Full-text: Open access

Abstract

We study K-processes, which are Markov processes in a denumerable state space, all of whose elements are stable, with the exception of a single state, starting from which the process enters finite sets of stable states with uniform distribution. We show how these processes arise, in a particular instance, as scaling limits of the trap model in the complete graph, and subsequently derive aging results for those models in this context.

Article information

Source
Ann. Probab., Volume 36, Number 4 (2008), 1322-1358.

Dates
First available in Project Euclid: 29 July 2008

Permanent link to this document
https://projecteuclid.org/euclid.aop/1217360971

Digital Object Identifier
doi:10.1214/07-AOP360

Mathematical Reviews number (MathSciNet)
MR2435851

Zentralblatt MATH identifier
1154.60073

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments 82C44: Dynamics of disordered systems (random Ising systems, etc.)

Keywords
K-process processes in denumerable state spaces scaling limit trap models random energy model aging

Citation

Fontes, L. R. G.; Mathieu, P. K-processes, scaling limit and aging for the trap model in the complete graph. Ann. Probab. 36 (2008), no. 4, 1322--1358. doi:10.1214/07-AOP360. https://projecteuclid.org/euclid.aop/1217360971


Export citation

References

  • [1] Ben Arous, G. and Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one. Ann. Appl. Probab. 15 1161–1192.
  • [2] Ben Arous, G. and Černý, J. (2007). Scaling limit for trap models on ℤd. Ann. Probab. 35 2356–2384.
  • [3] Ben Arous, G. and Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Comm. Pure Appl. Math. 61 289–329.
  • [4] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys. 235 379–425.
  • [5] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys. 236 1–54.
  • [6] Ben Arous, G., Černý, J. and Mountford, T. (2006). Aging in two-dimensional Bouchaud’s model. Probab. Theory Related Fields 134 1–43.
  • [7] Bouchaud, J.-P. and Dean, D. S. (1995). Aging on Parisi’s tree. J. Phys. I France 5 265–286.
  • [8] Bouchaud, J.-P., Cugliandolo, L., Kurchan, J. and Mézard, M. (1998). Out of equilibrium dynamics in spin-glasses and other glassy systems. In Spin-Glasses and Random Fields (A. P. Young, ed.) 161–224. World Scientific, Singapore.
  • [9] Bovier, A. and Faggionato, A. (2005). Spectral characterization of aging: The REM-like trap model. Ann. Appl. Probab. 15 1997–2037.
  • [10] Černý, J. (2003). On two properties of strongly disordered systems, aging and critical path analysis. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.
  • [11] Chen, Z.-Q., Fukushima, M. and Ying, J. (2007). Extending Markov processes in weak duality by Poisson point processes of excursions. In Stochastic Analysis and Applications. The Abel Symposium 2005 (F. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, eds.). Springer, Berlin.
  • [12] Chung, K. L. (1967). Markov Chains with Stationary Transition Probabilities, 2nd ed. Springer, Berlin.
  • [13] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence. Wiley, New York.
  • [14] Feller, W. (1971). An Introduction to Probability Theory and Its Applications II, 2nd ed. Wiley, New York.
  • [15] Fontes, L. R. G., Isopi, M., Kohayakawa, Y. and Picco, P. (1998). Spectral gap of the REM under Metropolis dynamics. Ann. Appl. Probab. 8 917–943.
  • [16] Fontes, L. R. G., Isopi, M. and Newman, C. M. (2002). Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. Ann. Probab. 30 579–604.
  • [17] Freedman, D. (1972). Approximating Countable Markov Chains. Holden-Day, San Francisco, CA.
  • [18] Fukushima, M. and Tanaka, H. (2005). Poisson point processes attached to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 41 419–459.
  • [19] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin.
  • [20] Kendall, D. G. and Reuter, G. E. H. (1956). Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on l. In Proceedings of the International Congress of Mathematicians, 1954, Amsterdam III 377–415. Erven P. Noordhoff N. V., Groningen.
  • [21] Kolmogorov, A. N. (1951). On the differentiability of the transition probabilities in stationary Markov processes with a denumerable number of states. Moskov. Gos. Univ. Učenye Zapiski Matematika 148 53–59.
  • [22] Lévy, P. (1951). Systèmes markoviens et stationnaires. Cas dénombrable. Ann. Sci. École Norm. Sup. (3) 68 327–381.
  • [23] Sharpe, M. (1988). General Theory of Markov Processes. Academic Press, Boston.