The Annals of Probability

Critical random graphs: Diameter and mixing time

Asaf Nachmias and Yuval Peres

Full-text: Open access

Abstract

Let $\mathcal{C}_{1}$ denote the largest connected component of the critical Erdős–Rényi random graph $G(n,{\frac{1}{n}})$. We show that, typically, the diameter of $\mathcal{C}_{1}$ is of order n1/3 and the mixing time of the lazy simple random walk on $\mathcal{C}_{1}$ is of order n. The latter answers a question of Benjamini, Kozma and Wormald. These results extend to clusters of size n2/3 of p-bond percolation on any d-regular n-vertex graph where such clusters exist, provided that p(d−1)≤1+O(n−1/3).

Article information

Source
Ann. Probab., Volume 36, Number 4 (2008), 1267-1286.

Dates
First available in Project Euclid: 29 July 2008

Permanent link to this document
https://projecteuclid.org/euclid.aop/1217360969

Digital Object Identifier
doi:10.1214/07-AOP358

Mathematical Reviews number (MathSciNet)
MR2435849

Zentralblatt MATH identifier
1160.05053

Subjects
Primary: 05C80: Random graphs [See also 60B20] 82B43: Percolation [See also 60K35] 60C05: Combinatorial probability

Keywords
Percolation random graphs random walk mixing time

Citation

Nachmias, Asaf; Peres, Yuval. Critical random graphs: Diameter and mixing time. Ann. Probab. 36 (2008), no. 4, 1267--1286. doi:10.1214/07-AOP358. https://projecteuclid.org/euclid.aop/1217360969


Export citation

References

  • [1] Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812–854.
  • [2] Aldous, D. and Fill, J. (2007). Reversible Markov Chains and Random Walks on Graphs. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.
  • [3] Alon, N. and Spencer, J. H. (2000). The Probabilistic Method, 2nd ed. Wiley, New York.
  • [4] Barlow, M. and Kumagai, T. (2006). Random walk on the incipient infinite cluster on trees. Available at http://www.arxiv.org/abs/math.PR/0503118.
  • [5] Benjamini, I., Kozma, G. and Wormald, N. (2006). The mixing time of the giant component of a random graph. Available at http://www.arxiv.org/abs/math.PR/0610459.
  • [6] Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algoritms 31 3–122.
  • [7] Borgs, C., Chayes, J. T., van der Hofstad, R., Slade, G. and Spencer, J. (2005). Random subgraphs of finite graphs: I. The scaling window under the triangle condition. Random Structures Algoritms 27 137–184.
  • [8] Chandra, A. K., Raghavan, P., Ruzzo, W. L. and Smolensky, R. (1989). The electrical resistance of a graph captures its commute and cover times. Proc. Twenty-First ACM Symposium on Theory of Computing 574–586. ACM Press, New York.
  • [9] Chung, F. and Lu, L. (2001). The diameter of random sparse graphs. Adv. in Appl. Math. 26 257–279.
  • [10] Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Kőzl. 5 17–61.
  • [11] Fernholz, D. and Ramachandran, V. (2004). The diameter of sparse random graphs. Available at http://www.cs.utexas.edu/~fernholz/diam.ps.
  • [12] Fountoulakis, N. and Reed, B. A. (2006). The evolution of the mixing rate. Preprint.
  • [13] van der Hofstad, R. and Luczak, M. (2006). Random subgraphs of the 2D Hamming graph: The supercritical phase. Preprint.
  • [14] Kolchin, V. F. (1986). Random Mappings. Optimization Software, New York.
  • [15] Kesten, H., Ney, P. and Spitzer, F. (1966). The Galton–Watson process with mean one and finite variance. Theory Probab. Appl. 11 579–611.
  • [16] Kolmogorov, A. N. (1938). On the solution of a problem in biology. Izv. NII Matem. Mekh. Tomskogo Univ. 2 7–12.
  • [17] Łuczak, T. (1998). Random trees and random graphs. Random Structures Algoritms 13 485–500.
  • [18] Łuczak, T., Pittel, B. and Wierman, J. C. (1994). The structure of a random graph at the point of the phase transition. Trans. Amer. Math. Soc. 341 721–748.
  • [19] Lyons, R. (1992). Random walks, capacity and percolation on trees. Ann. Probab. 20 2043–2088.
  • [20] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23 1125–1138.
  • [21] Nachmias, A. and Peres, Y. (2005). The critical random graph, with martingales. Israel J. Math. To appear. Available at http://www.arxiv.org/abs/math.PR/0512201.
  • [22] Nachmias, A. and Peres, Y. (2006). Critical percolation on random regular graphs. Preprint. Available at http://www.arxiv.org/abs/0707.2839.
  • [23] Nash-Williams, C. St. J. A. (1959). Random walk and electric currents in networks. Proc. Cambridge Philos. Soc. 55 181–194.
  • [24] Peres, Y. (1999). Probability on trees: An introductory climb. École d’Été de Probabilités de Saint-Flour XXVII. Lecture Notes in Math. 1717 193–280. Springer, Berlin.
  • [25] Tetali, P. (1991). Random walks and the effective resistance of networks. J. Theoret. Probab. 4 101–109.