Annals of Probability

Stochastic domination for a hidden Markov chain with applications to the contact process in a randomly evolving environment

Erik I. Broman

Full-text: Open access

Abstract

The ordinary contact process is used to model the spread of a disease in a population. In this model, each infected individual waits an exponentially distributed time with parameter 1 before becoming healthy. In this paper, we introduce and study the contact process in a randomly evolving environment. Here we associate to every individual an independent two-state, {0, 1}, background process. Given δ0<δ1, if the background process is in state 0, the individual (if infected) becomes healthy at rate δ0, while if the background process is in state 1, it becomes healthy at rate δ1. By stochastically comparing the contact process in a randomly evolving environment to the ordinary contact process, we will investigate matters of extinction and that of weak and strong survival. A key step in our analysis is to obtain stochastic domination results between certain point processes. We do this by starting out in a discrete setting and then taking continuous time limits.

Article information

Source
Ann. Probab., Volume 35, Number 6 (2007), 2263-2293.

Dates
First available in Project Euclid: 8 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1191860421

Digital Object Identifier
doi:10.1214/0091179606000001187

Mathematical Reviews number (MathSciNet)
MR2353388

Zentralblatt MATH identifier
1126.82024

Subjects
Primary: 82C22: Interacting particle systems [See also 60K35] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Contact process stochastic domination hidden Markov chain

Citation

Broman, Erik I. Stochastic domination for a hidden Markov chain with applications to the contact process in a randomly evolving environment. Ann. Probab. 35 (2007), no. 6, 2263--2293. doi:10.1214/0091179606000001187. https://projecteuclid.org/euclid.aop/1191860421


Export citation

References

  • Andjel, E. D. (1992). Survival of multidimensional contact process in random environments. Bol. Soc. Bras. Mat. (N.S.) 23 109--119.
  • Bramson, M., Durrett, R. and Schonmann, R. H. (1991). The contact process in a random environment. Ann. Probab. 19 960--983.
  • Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462--1482.
  • Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
  • Broman, E. I. and Steif, J. E. (2006). Dynamical stability of percolation for some interacting particle systems and $\epsilon$-movability. Ann. Probab. 34 539--576.
  • Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • Freed, D. S. and Shepp, L. A. (1982). A Poisson process whose rate is a hidden Markov chain. Adv. in Appl. Probab. 14 21--36.
  • Liggett, T. M. (1991). Spatially inhomogeneous contact process. In Spatial Stochastic Processes. A Festschrift in Honor of Ted Harris on His Seventieth Birthday (K. S. Alexander and J. C. Watkins, eds.) 105--140. Birkhäuser, Boston.
  • Liggett, T. M. (1992). The survival of one dimensional contact process in random environments. Ann. Probab. 20 696--723.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.
  • Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. 42 223--243.
  • Madras, N., Schinazi, R. and Schonmann, R. (1994). On the critical behavior of the contact process in deterministic inhomogeneous random environment. Ann. Probab. 22 1140--1159.
  • Newman, C. M. and Volchan, S. (1996). Persistent survival of one-dimensional contact process in random environments. Ann. Probab. 24 411--421.