The Annals of Probability

A functional CLT for the occupation time of a state-dependent branching random walk

Matthias Birkner and Iljana Zähle

Full-text: Open access

Abstract

We show that the centred occupation time process of the origin of a system of critical binary branching random walks in dimension d≥3, started off either from a Poisson field or in equilibrium, when suitably normalized, converges to a Brownian motion in d≥4. In d=3, the limit process is a fractional Brownian motion with Hurst parameter 3/4 when starting in equilibrium, and a related Gaussian process when starting from a Poisson field. For (dependent) branching random walks with state dependent branching rate we obtain convergence in f.d.d. to the same limit process, and for d=3 also a functional limit theorem.

Article information

Source
Ann. Probab., Volume 35, Number 6 (2007), 2063-2090.

Dates
First available in Project Euclid: 8 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1191860416

Digital Object Identifier
doi:10.1214/009117907000000150

Mathematical Reviews number (MathSciNet)
MR2353383

Zentralblatt MATH identifier
1128.60083

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
State dependent branching random walk occupation time functional central limit theorem

Citation

Birkner, Matthias; Zähle, Iljana. A functional CLT for the occupation time of a state-dependent branching random walk. Ann. Probab. 35 (2007), no. 6, 2063--2090. doi:10.1214/009117907000000150. https://projecteuclid.org/euclid.aop/1191860416


Export citation

References

  • Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.
  • Bramson, M., Cox, J. T. and Greven, A. (1997). Invariant measures of critical spatial branching processes in high dimensions. Ann. Probab. 25 56--70.
  • Bojdecki, T., Gorostiza, L. G. and Talarczyk, A. (2004). Sub-fractional Brownian motion and its relation to occupation times. Statist. Probab. Lett. 69 405--419.
  • Bojdecki, T., Gorostiza, L. G. and Talarczyk, A. (2005). A long range dependence stable process and an infinite variance branching system. Available at http://www.arxiv.org/abs/math.PR/0511739.
  • Bojdecki, T., Gorostiza, L. G. and Talarczyk, A. (2005). Occupation time fluctuations of an infinite variance branching system in large dimensions. Available at http://www.arxiv.org/abs/math.PR/0511745.
  • Bojdecki, T., Gorostiza, L. G. and Talarczyk, A. (2006). Limit theorems for occupation time fluctuations of branching systems. I. Long-range dependence. Stochastic Process. Appl. 116 1--18.
  • Bojdecki, T., Gorostiza, L. G. and Talarczyk, A. (2006). Limit theorems for occupation time fluctuations of branching systems. II. Critical and large dimensions. Stochastic Process. Appl. 116 19--35.
  • Birkner, M. (2003). Particle Systems with Locally Dependent Branching: Long-Time Behaviour, Genealogy and Critical Parameters. Johann Wolfgang Goethe-Universität Frankfurt. Available at http://publikationen.stub.uni-frankfurt.de/volltexte/2003/314/.
  • Birkner, M. (2007). Temporal decorrelation for branching random walks with state dependent branching rate. WIAS Preprint 1202.
  • Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York.
  • Birkner, M. and Zähle, I. (2005). Functional central limit theorem for the occupation time of the origin for branching random walks in $d \ge3$. WIAS Preprint 1011.
  • Cox, J. T. and Griffeath, D. (1984). Large deviations for Poisson systems of independent random walks. Z. Wahrsch. Verw. Gebiete 66 543--558.
  • Cox, J. T. and Greven, A. (1990). On the long term behavior of some finite particle systems. Probab. Theory Related Fields 85 195--237.
  • Dawson, D. A., Gorostiza, L. G. and Wakolbinger, A. (2001). Occupation time fluctuations in branching systems. J. Theoret. Probab. 14 729--796.
  • Durrett, R. (1979). An infinite particle system with additive interactions. Adv. in Appl. Probab. 11 355--383.
  • Dynkin, E. B. (1988). Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times. Astérisque 157--158 147--171. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987).
  • Greven, A. (1991). A phase transition for the coupled branching process. I. The ergodic theory in the range of finite second moments. Probab. Theory Related Fields 87 417--458.
  • Kallenberg, O. (1997). Foundations of Modern Probability. Springer, New York.
  • Kipnis, C. (1987). Fluctuations des temps d'occupation d'un site dans l'exclusion simple symétrique. Ann. Inst. H. Poincaré Probab. Statist. 23 21--35.
  • Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1--19.
  • Liemant, A. (1969). Invariante zufällige Punktfolgen. Wiss. Z. Friedrich-Schiller-Univ. Jena 18 361--372.
  • Liggett, T. M. and Spitzer, F. (1981). Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Wahrsch. Verw. Gebiete 56 443--468.
  • Miłoś, P. (2006). Occupation time fluctuations of Poisson and equilibrium finite variance branching systems. Available at http://www.arxiv.org/abs/math.PR/0512414.
  • Quastel, J., Jankowski, H. and Sheriff, J. (2002). Central limit theorem for zero-range processes. Methods Appl. Anal. 9 393--406.
  • Rebolledo, R. (1980). Central limit theorems for local martingales. Z. Wahrsch. Verw. Gebiete 51 269--286.
  • Stoeckl, A. and Wakolbinger, A. (1994). On clan-recurrence and -transience in time stationary branching Brownian particle systems. In Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems (Montreal, PQ, 1992) 213--219. Amer. Math. Soc., Providence, RI.
  • Walsh, J. B. (1986). An introduction to stochastic partial differential equations. École d'Été de Probabilités de Saint-Flour XIV---1984. Lecture Notes Math. 180 266--439. Springer, Berlin.
  • Zähle, I. (2002). Renormalizations of branching random walks in equilibrium. Electron. J. Probab. 7 1--57.