The Annals of Probability

Rosenthal type inequalities for free chaos

Marius Junge, Javier Parcet, and Quanhua Xu

Full-text: Open access


Let $\mathcal{A}$ denote the reduced amalgamated free product of a family $\mathsf{A}_{1},\mathsf{A}_{2},\ldots,\mathsf{A}_{n}$ of von Neumann algebras over a von Neumann subalgebra ℬ with respect to normal faithful conditional expectations $\mathsf {E}_{k}\dvtx\mathsf{A}_{k}\to \mathcal {B}$. We investigate the norm in $L_{p}(\mathcal {A})$ of homogeneous polynomials of a given degree d. We first generalize Voiculescu’s inequality to arbitrary degree d≥1 and indices 1≤p≤∞. This can be regarded as a free analogue of the classical Rosenthal inequality. Our second result is a length-reduction formula from which we generalize recent results of Pisier, Ricard and the authors. All constants in our estimates are independent of n so that we may consider infinitely many free factors. As applications, we study square functions of free martingales. More precisely, we show that, in contrast with the Khintchine and Rosenthal inequalities, the free analogue of the Burkholder–Gundy inequalities does not hold in $L_{\infty}(\mathcal {A})$. At the end of the paper we also consider Khintchine type inequalities for Shlyakhtenko’s generalized circular systems.

Article information

Ann. Probab. Volume 35, Number 4 (2007), 1374-1437.

First available in Project Euclid: 8 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L54: Free probability and free operator algebras 42A61: Probabilistic methods 46L07: Operator spaces and completely bounded maps [See also 47L25] 46L52: Noncommutative function spaces

Khintchine inequality Rosenthal inequality reduced amalgamated free product free random variables homogeneous polynomial


Junge, Marius; Parcet, Javier; Xu, Quanhua. Rosenthal type inequalities for free chaos. Ann. Probab. 35 (2007), no. 4, 1374--1437. doi:10.1214/009117906000000962.

Export citation


  • Bożejko, M., Kümmerer, B. and Speicher, R. (1997). $q$-Gaussian processes: Non-commutative and classical aspects. Comm. Math. Phys. 185 129--154.
  • Bożejko, M. and Speicher, R. (1994). Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300 97--120.
  • Buchholz, A. (1999). Norm of convolution by operator-valued functions on free groups. Proc. Amer. Math. Soc. 127 1671--1682.
  • Buchholz, A. (2001). Operator Khintchine inequality in non-commutative probability. Math. Ann. 319 1--16.
  • Burkholder, D. L. and Gundy, R. F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124 249--304.
  • Connes, A. (1973). Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. (4) 6 133--252.
  • Effros, E. G. and Ruan, Z. J. (2000). Operator Spaces. Oxford Univ. Press.
  • Haagerup, U. (1978/79). An example of a nonnuclear $C^*$-algebra, which has the metric approximation property. Invent. Math. 50 279--293.
  • Haagerup, U. (1979). $L_p$ spaces associated with an arbitrary von Neumann algebra. Algèbres d'Opérateurs et Leurs Applications en Physique Mathématique 175--184. CNRS, Paris.
  • Haagerup, U. and Pisier, G. (1993). Bounded linear operators between $C^*$-algebras. Duke Math. J. 71 889--925.
  • Hiai, F. (2003). $q$-deformed Araki--Wood algebras. In Operator Algebras and Mathematical Physics 169--202. Theta, Bucharest.
  • Johnson, W. B., Schechtman, G. and Zinn, J. (1985). Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13 234--253.
  • Junge, M. (2002). Doob's inequality for non-commutative martingales. J. Reine Angew. Math. 549 149--190.
  • Junge, M. (2005). Embedding of the operator space $\mathrmOH$ and the logarithmic ``little Grothendieck inequality.'' Invent. Math. 161 225--286.
  • Junge, M. and Parcet, J. (2005). Theory of amalgamated $L_p$ spaces in noncommutative probability. Preprint.
  • Junge, M. and Sherman, D. (2005). Noncommutative $L_p$ modules. J. Operator Theory 53 3--34.
  • Junge, M. and Xu, Q. (2003). Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31 948--995.
  • Junge, M. and Xu, Q. (2005). Noncommutative Burkholder/Rosenthal inequalities II: Applications. Preprint.
  • Kadison, R. V. and Ringrose, J. R. (1997). Fundamentals of the Theory of Operator Algebras. I, II. Amer. Math. Soc., Providence, RI. and
  • Kosaki, H. (1984). Applications of the complex interpolation method to a von Neumann algebra. J. Funct. Anal. 56 29--78.
  • Kwapień, S. and Pelczynski, A. (1970). The main triangle projection in matrix spaces and its applications. Studia Math. 34 43--68.
  • Lance, E. C. (1995). Hilbert C$^*$-Modules. Cambridge Univ. Press.
  • Leinert, M. (1974). Faltungsoperatoren auf gewissen diskreten Gruppen. Studia Math. 52 149--158.
  • Lust-Piquard, F. (1986). Inégalités de Khintchine dans $C_p$ $(1 < p < \infty)$. C. R. Acad. Sci. Paris Sér. I Math. 303 289--292.
  • Lust-Piquard, F. and Pisier, G. (1991). Noncommutative Khintchine and Paley inequalities. Ark. Mat. 29 241--260.
  • Nou, A. (2004). Non injectivity of the $q$-deformed von Neumann algebra. Math. Ann. 330 17--38.
  • Parcet, J. and Pisier, G. (2005). Non-commutative Khintchine type inequalities associated with free groups. Indiana Univ. Math. J. 54 531--556.
  • Parcet, J. and Randrianantoanina, N. (2006). Gundy's decomposition for non-commutative martingales and applications. Proc. London Math. Soc. (3) 93 227--252.
  • Paschke, W. (1973). Inner product modules over $B^*$-algebras. Trans. Amer. Math. Soc. 182 443--468.
  • Pedersen, G. and Takesaki, M. (1973). The Radon--Nikodym theorem for von Neumann algebras. Acta Math. 130 53--87.
  • Pisier, G. (1998). Non-Commutative Vector Valued $L_p$-Spaces and Completely $p$-Summing Maps. Astérisque 247.
  • Pisier, G. (2003). Introduction to Operator Space Theory. Cambridge Univ. Press.
  • Pisier, G. and Shlyakhtenko, D. (2002). Grothendieck's theorem for operator spaces. Invent. Math. 150 185--217.
  • Pisier, G. and Xu, Q. (1997). Non-commutative martingale inequalities. Comm. Math. Phys. 189 667--698.
  • Pisier, G. and Xu, Q. (2003). Non-commutative $L_p$-spaces. In Handbook of the Geometry of Banach Spaces II (W. B. Johnson and J. Lindenstrauss, eds.) 1459--1517. North-Holland, Amsterdam.
  • Randrianantoanina, N. (2005). A weak type inequality for non-commutative martingales and applications. Proc. London Math. Soc. (3) 91 509--544.
  • Ricard, E. and Xu, Q. (2006). Khitnchine type inequalities for reduced free products and applications. J. Reine Angew. Math. 599 27--59.
  • Rosenthal, H. P. (1970). On the subspaces of $L^p$ $(p>2)$ spanned by sequences of independent random variables. Israel J. Math. 8 273--303.
  • Shlyakhtenko, D. (1997). Free quasi-free states. Pacific J. Math. 177 329--368.
  • Takesaki, M. (1972). Conditional expectations in von Neumann algebras. J. Funct. Anal. 9 306--321.
  • Terp, M. (1981). $L_p$ Spaces Associated with von Neumann Algebras. Math. Institute Copenhagen Univ.
  • Terp, M. (1982). Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory 8 327--360.
  • Voiculescu, D. V. (1985). Symmetries of some reduced free product $\mathrmC^*$-algebras. Operator Algebras and Their Connections with Topology and Ergodic Theory. Lecture Notes in Math. 1132 556--588. Springer, Berlin.
  • Voiculescu, D. V. (1998). A strengthened asymptotic freeness result for random matrices with applications to free entropy. Internat. Math. Res. Notices 1 41--63.
  • Voiculescu, D. V., Dykema, K. and Nica, A. (1992). Free Random Variables. Amer. Math. Soc., Providence, RI.
  • Xu, Q. (2003). Recent development on non-commutative martingale inequalities. In Functional Space Theory and Its Applications. Proceedings of International Conference & 13th Academic Symposium in China. 283--314. Research Information Ltd, UK.
  • Xu, Q. (2006). Operator space Grothendieck inequalities for noncommutative $L_p$-spaces. Duke Math. J. 131 525--574.