The Annals of Probability

A Note on Continuous Parameter Zero-Two Law

William Winkler

Full-text: Open access

Abstract

Let $\{X_t\}, 0 \leqq t < \infty$, be a Markov process with state space $(E, \mathscr{E})$. Let $m$ be a $\sigma$-finite measure on $(E, \mathscr{E})$ and let the $L_\infty(E, \mathscr{E}, m)$ operator induced by the transition probability $P_t(x, A), x\in E, A\in \mathscr{E}$, be conservative and ergodic for all $t > 0$. Let $(m)$ abbreviate $m$ modulo 0. For fixed $\alpha > 0$, set $h^\alpha(x) = \lim_{t \rightarrow \infty} \|P_t(x, \bullet) - P_{t + \alpha}(x, \bullet)\|$, where $\|\bullet\|$ is the total variation. THEOREM. Either $h^\alpha(x) = 0(m)$ for $\operatorname{a.e} \alpha\in\mathbb{R}_+$ or $h^\alpha(x) = 2 (m)$ for $\operatorname{a.e} \alpha\in\mathbb{R}_+$. In particular, if $\{X_t\}, 0 \leqq t < \infty$, is a Markov process satisfying a Harris type recurrence condition, then $h^\alpha(x) = 0 (m)$ for $\operatorname{a.e} \alpha\in\mathbb{R}_+$.

Article information

Source
Ann. Probab., Volume 1, Number 2 (1973), 341-344.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176996989

Digital Object Identifier
doi:10.1214/aop/1176996989

Mathematical Reviews number (MathSciNet)
MR350865

Zentralblatt MATH identifier
0261.60051

JSTOR
links.jstor.org

Keywords
6060 6062 Markov process conservative and ergodic transition probability zero-two law Harris conddition

Citation

Winkler, William. A Note on Continuous Parameter Zero-Two Law. Ann. Probab. 1 (1973), no. 2, 341--344. doi:10.1214/aop/1176996989. https://projecteuclid.org/euclid.aop/1176996989


Export citation