The Annals of Probability

On the Integrability of the Supremum of Ergodic Ratios

Yves Derriennic

Full-text: Open access

Abstract

We study the integrability of the supremum of ergodic ratios defined by means of a measure-preserving conservative ergodic transformation of a $\sigma$-finite measure space. Our result implies Ornstein's recent result for the supremum of ergodic averages.

Article information

Source
Ann. Probab., Volume 1, Number 2 (1973), 338-340.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176996988

Digital Object Identifier
doi:10.1214/aop/1176996988

Mathematical Reviews number (MathSciNet)
MR352404

Zentralblatt MATH identifier
0263.28015

JSTOR
links.jstor.org

Keywords
2870 6060 Measure-preserving conservative ergodic transformation reverse maximal inequality

Citation

Derriennic, Yves. On the Integrability of the Supremum of Ergodic Ratios. Ann. Probab. 1 (1973), no. 2, 338--340. doi:10.1214/aop/1176996988. https://projecteuclid.org/euclid.aop/1176996988


Export citation