The Annals of Probability

On Random Indices and Limit Distributions

Laurens De Haan

Full-text: Open access

Abstract

This note complements a recent article by Thomas (1972). We prove a conjecture of Thomas which, in a way, makes his results complete. The proof uses the fact that for the sequences of random variables involved, the weak convergence property is conserved when taking certain transformations of the random variables.

Article information

Source
Ann. Probab., Volume 2, Number 1 (1974), 181.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176996767

Digital Object Identifier
doi:10.1214/aop/1176996767

Mathematical Reviews number (MathSciNet)
MR358926

Zentralblatt MATH identifier
0277.60005

JSTOR
links.jstor.org

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60G99: None of the above, but in this section

Keywords
Limiting distributions random number of variables

Citation

Haan, Laurens De. On Random Indices and Limit Distributions. Ann. Probab. 2 (1974), no. 1, 181. doi:10.1214/aop/1176996767. https://projecteuclid.org/euclid.aop/1176996767


Export citation