## The Annals of Probability

- Ann. Probab.
- Volume 10, Number 1 (1982), 108-123.

### Properties of the Empirical Distribution Function for Independent Non- Identically Distributed Random Vectors

#### Abstract

A generalization to the case of independent but not necessarily identically distributed two-dimensional underlying random vectors is obtained of results on univariate empirical df's of van Zuijlen (1976) (linear bounds), Ghosh (1972) and Ruymgaart and van Zuijlen (1978b). No conditions are imposed on the dependence structure of the underlying df's. In the process improvements of van Zuijlen's results concerning linear bounds in the univariate non-i.i.d. case are obtained, whereas also applications of the results on multivariate empirical df's are discussed. Extensions of the two-dimensional results to the $k$-dimensional case $(k > 2)$ are straightforward and therefore omitted.

#### Article information

**Source**

Ann. Probab., Volume 10, Number 1 (1982), 108-123.

**Dates**

First available in Project Euclid: 19 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aop/1176993916

**Digital Object Identifier**

doi:10.1214/aop/1176993916

**Mathematical Reviews number (MathSciNet)**

MR637379

**Zentralblatt MATH identifier**

0482.60038

**JSTOR**

links.jstor.org

**Subjects**

Primary: 60G17: Sample path properties

Secondary: 62G30: Order statistics; empirical distribution functions

**Keywords**

Empirical distribution function multivariate non-i.i.d. case linear bounds

#### Citation

van Zuijlen, Martien C. A. Properties of the Empirical Distribution Function for Independent Non- Identically Distributed Random Vectors. Ann. Probab. 10 (1982), no. 1, 108--123. doi:10.1214/aop/1176993916. https://projecteuclid.org/euclid.aop/1176993916