## The Annals of Probability

- Ann. Probab.
- Volume 12, Number 1 (1984), 223-229.

### Urn Models for Markov Exchangeability

#### Abstract

Markov exchangeability, a generalization of exchangeability that was proposed by de Finetti, requires that a probability on a string of letters be constant on all strings which have the same initial letter and the same transition counts. The set of Markov exchangeable measures forms a convex set. A graph theoretic and an urn interpretation of the extreme points of this convex set is given.

#### Article information

**Source**

Ann. Probab., Volume 12, Number 1 (1984), 223-229.

**Dates**

First available in Project Euclid: 19 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aop/1176993385

**Digital Object Identifier**

doi:10.1214/aop/1176993385

**Mathematical Reviews number (MathSciNet)**

MR723741

**Zentralblatt MATH identifier**

0542.60065

**JSTOR**

links.jstor.org

**Subjects**

Primary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces)

Secondary: 62A15 05C35: Extremal problems [See also 90C35]

**Keywords**

Extreme point representation partial exchangeability Eulerian paths

#### Citation

Zaman, Arif. Urn Models for Markov Exchangeability. Ann. Probab. 12 (1984), no. 1, 223--229. doi:10.1214/aop/1176993385. https://projecteuclid.org/euclid.aop/1176993385