The Annals of Probability

Recurrence Classification and Invariant Measure for Reflected Brownian Motion in a Wedge

R. J. Williams

Full-text: Open access

Abstract

The object of study in this paper is reflected Brownian motion in a two-dimensional wedge with constant direction of reflection on each side of the wedge. The following questions are considered. Is the process recurrent? If it is recurrent, what is its invariant measure? Let $\xi$ be the angle of the wedge $(0 < \xi < 2\pi)$ and let $\theta_1$ and $\theta_2$ be the angles of reflection on the two sides of the wedge, measured from the inward normals towards the directions of reflection, with positive angles being toward the corner $(-\pi/2 < \theta_1, \theta_2 < \pi/2)$. Set $\alpha = (\theta_1 + \theta_2)/\xi$. Varadhan and Williams (1985) have shown that the process exists and is unique, in the sense that it solves a certain submartingale problem, when $\alpha < 2$. It is shown here that if $\alpha < 0$, the process is transient (to infinity). If $0 \leq \alpha < 2$, the process is shown to be (finely) recurrent and to have a unique (up to a scalar multiple) $\sigma$-finite invariant measure. It is further proved that the density for this invariant measure is given in polar coordinates by $p(r, \theta) = r^{-\alpha}\cos(\alpha\theta - \theta_1)$.

Article information

Source
Ann. Probab., Volume 13, Number 3 (1985), 758-778.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176992907

Digital Object Identifier
doi:10.1214/aop/1176992907

Mathematical Reviews number (MathSciNet)
MR799421

Zentralblatt MATH identifier
0596.60078

JSTOR
links.jstor.org

Subjects
Primary: 60J65: Brownian motion [See also 58J65]
Secondary: 60J60: Diffusion processes [See also 58J65] 60J25: Continuous-time Markov processes on general state spaces

Keywords
Brownian motion oblique reflection two-dimensional wedge fine recurrence transience invariant measure

Citation

Williams, R. J. Recurrence Classification and Invariant Measure for Reflected Brownian Motion in a Wedge. Ann. Probab. 13 (1985), no. 3, 758--778. doi:10.1214/aop/1176992907. https://projecteuclid.org/euclid.aop/1176992907


Export citation