Open Access
October, 1986 Answers to Some Questions About Increments of a Wiener Process
Chen Guijing, Kong Fanchao, Lin Zhengyan
Ann. Probab. 14(4): 1252-1261 (October, 1986). DOI: 10.1214/aop/1176992366

Abstract

Let $W(t), 0 \leq t < \infty$, be a Wiener process. This paper proves that $\lim \sup_{T \rightarrow \infty} \sup_{0 < t \leq T} \frac{|W(T) - W(T - t)|}{\{2t(\log(T/t) + \log\log t)\}^{1/2}} = 1, a.s.,$ $\lim_{T \rightarrow \infty} \sup_{0 < t \leq T} \sup_{t \leq s \leq T} \frac{|W(T) - W(s - t)|}{\{2t(\log(T/t) + \log \log t)\}^{1/2}} = 1, a.s.$ These results give an affirmative answer to the questions posed by Hanson and Russo without additional assumptions.

Citation

Download Citation

Chen Guijing. Kong Fanchao. Lin Zhengyan. "Answers to Some Questions About Increments of a Wiener Process." Ann. Probab. 14 (4) 1252 - 1261, October, 1986. https://doi.org/10.1214/aop/1176992366

Information

Published: October, 1986
First available in Project Euclid: 19 April 2007

zbMATH: 0613.60027
MathSciNet: MR866346
Digital Object Identifier: 10.1214/aop/1176992366

Subjects:
Primary: 60F15
Secondary: 60G15 , 60G17

Keywords: Almost sure convergence , Increments of a Wiener process , Law of iterated logarithm , Wiener process

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 4 • October, 1986
Back to Top