The Annals of Probability

Characterization of the Law of the Iterated Logarithm in Banach Spaces

M. Ledoux and M. Talagrand

Full-text: Open access

Abstract

Using a Gaussian randomization technique, we prove that a random variable $X$ with values in a Banach space $B$ satisfies the (compact) law of the iterated logarithm if and only if (i) $E(\|X\|^2/LL\|X\|) < \infty$, (ii) $\{|\langle x^\ast, X \rangle |^2; x^\ast \in B^\ast, \|x^\ast\| \leq 1\}$ is uniformly integrable and (iii) $S_n(x)/a_n\rightarrow 0$ in probability. In particular, if $B$ is of type 2, in order that $X$ satisfy the law of the iterated logarithm it is necessary and sufficient that $X$ have mean zero and satisfy (i) and (ii). The proof uses tools of the theory of Gaussian random vectors as well as by now classical arguments of probability in Banach spaces. It also sheds some light on the usual law of the iterated logarithm on the line.

Article information

Source
Ann. Probab., Volume 16, Number 3 (1988), 1242-1264.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176991688

Digital Object Identifier
doi:10.1214/aop/1176991688

Mathematical Reviews number (MathSciNet)
MR942766

Zentralblatt MATH identifier
0662.60008

JSTOR
links.jstor.org

Subjects
Primary: 60B12: Limit theorems for vector-valued random variables (infinite- dimensional case)
Secondary: 60B11: Probability theory on linear topological spaces [See also 28C20] 60G15: Gaussian processes 46B20: Geometry and structure of normed linear spaces

Keywords
Law of the iterated logarithm Banach spaces Gaussian randomization type 2

Citation

Ledoux, M.; Talagrand, M. Characterization of the Law of the Iterated Logarithm in Banach Spaces. Ann. Probab. 16 (1988), no. 3, 1242--1264. doi:10.1214/aop/1176991688. https://projecteuclid.org/euclid.aop/1176991688


Export citation