The Annals of Probability

An Example on Highly Singular Parabolic Measure

Robert Kaufman and Jang-Mei Wu

Full-text: Open access

Abstract

For each $\delta > 0$ there is a parabolic operator in the half-plane $R_x \times R^+_t$ whose parabolic measure is supported by a boundary set of dimension $< \delta$.

Article information

Source
Ann. Probab., Volume 16, Number 4 (1988), 1821-1831.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176991599

Digital Object Identifier
doi:10.1214/aop/1176991599

Mathematical Reviews number (MathSciNet)
MR958218

Zentralblatt MATH identifier
0726.35050

JSTOR
links.jstor.org

Subjects
Primary: 35K05: Heat equation
Secondary: 60H10: Stochastic ordinary differential equations [See also 34F05] 28A75: Length, area, volume, other geometric measure theory [See also 26B15, 49Q15] 31B25: Boundary behavior 60J45: Probabilistic potential theory [See also 31Cxx, 31D05] 60J65: Brownian motion [See also 58J65]

Keywords
Parabolic measure Hausdorff dimension diffusion

Citation

Kaufman, Robert; Wu, Jang-Mei. An Example on Highly Singular Parabolic Measure. Ann. Probab. 16 (1988), no. 4, 1821--1831. doi:10.1214/aop/1176991599. https://projecteuclid.org/euclid.aop/1176991599


Export citation