The Annals of Probability

The Erdos-Renyi Strong Law for Pattern Matching with a Given Proportion of Mismatches

R. Arratia and M. S. Waterman

Full-text: Open access


Consider two random sequences $X_1 \cdots X_n$ and $Y_1 \cdots Y_n$ of i.i.d. letters in which the probability that two distinct letters match is $p > 0$. For each value $a$ between $p$ and 1, the length of the longest contiguous matching between the two sequences, requiring only a proportion $a$ of corresponding letters to match, satisfies a strong law analogous to the Erdos-Renyi law for coin tossing. The same law applies to matching between two nonoverlapping regions within a single sequence $X_1 \cdots X_n$, and a strong law with a smaller constant applies to matching between two overlapping regions within that single sequence. The method here also works to obtain the strong law for matching between multidimensional arrays, between two Markov chains and for the situation in which a given proportion of mismatches is required.

Article information

Ann. Probab., Volume 17, Number 3 (1989), 1152-1169.

First available in Project Euclid: 19 April 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Primary: 62E20: Asymptotic distribution theory
Secondary: 62P10: Applications to biology and medical sciences

Matching large deviations Ising model Potts model Hamming distance DNA sequences protein sequences


Arratia, R.; Waterman, M. S. The Erdos-Renyi Strong Law for Pattern Matching with a Given Proportion of Mismatches. Ann. Probab. 17 (1989), no. 3, 1152--1169. doi:10.1214/aop/1176991262.

Export citation