Open Access
October, 1989 Windings of Random Walks
Claude Belisle
Ann. Probab. 17(4): 1377-1402 (October, 1989). DOI: 10.1214/aop/1176991160

Abstract

Let $X_1, X_2, X_3, \ldots$ be a sequence of iid $\mathbb{R}^2$-valued bounded random variables with mean vector zero and covariance matrix identity. Let $S = (S_n; n \geq 0)$ be the random walk defined by $S_n = \sum^n_{i = 1} X_i$. Let $\phi(n)$ be the winding of $S$ at time $n$, that is, the total angle wound by $S$ around the origin up to time $n$. Under a mild regularity condition on the distribution of $X_1$, we show that $2\phi(n)/\log n \rightarrow_d W$ where $\rightarrow_d$ denotes convergence in distribution and where $W$ has density $(1/2)\operatorname{sech}(\pi w/2)$.

Citation

Download Citation

Claude Belisle. "Windings of Random Walks." Ann. Probab. 17 (4) 1377 - 1402, October, 1989. https://doi.org/10.1214/aop/1176991160

Information

Published: October, 1989
First available in Project Euclid: 19 April 2007

zbMATH: 0693.60020
MathSciNet: MR1048932
Digital Object Identifier: 10.1214/aop/1176991160

Subjects:
Primary: 60F05
Secondary: 60F15 , 60F17 , 60J65

Keywords: Asymptotic distributions , Brownian motion , Random walks , weak and strong invariance principle , windings

Rights: Copyright © 1989 Institute of Mathematical Statistics

Vol.17 • No. 4 • October, 1989
Back to Top