The Annals of Probability

On the Volume of the Wiener Sausage

E. Bolthausen

Full-text: Open access

Abstract

Let $W(t, \varepsilon)$ be the $\varepsilon$-Wiener sausage, i.e., the $\varepsilon$-neighborhood of the trace of the Brownian motion up to time $t$. It is shown that the results of Donsker and Varadhan on the behavior of $E(\exp(-\nu|W(t, \varepsilon)|)), \nu > 0$, remain true if $\varepsilon$ depends on $t$ and converges to 0 with a certain rate.

Article information

Source
Ann. Probab., Volume 18, Number 4 (1990), 1576-1582.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176990633

Digital Object Identifier
doi:10.1214/aop/1176990633

Mathematical Reviews number (MathSciNet)
MR1071810

Zentralblatt MATH identifier
0718.60021

JSTOR
links.jstor.org

Subjects
Primary: 60F10: Large deviations
Secondary: 60J65: Brownian motion [See also 58J65]

Keywords
Wiener sausage large deviations

Citation

Bolthausen, E. On the Volume of the Wiener Sausage. Ann. Probab. 18 (1990), no. 4, 1576--1582. doi:10.1214/aop/1176990633. https://projecteuclid.org/euclid.aop/1176990633


Export citation