The Annals of Probability

Weak Convergence for Reversible Random Walks in a Random Environment

Daniel Boivin

Full-text: Open access

Abstract

Assign to each edge $e$ of the square lattice $\mathbb{Z}^2$ a random bond conductivity $c(e)$. If $c(e)$ are stationary, ergodic and such that $0 < a < c(e) < b < \infty$ for all edges $e$, then there is a central limit theorem for the corresponding reversible random walk on the lattice which holds for almost all environments.

Article information

Source
Ann. Probab., Volume 21, Number 3 (1993), 1427-1440.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176989125

Digital Object Identifier
doi:10.1214/aop/1176989125

Mathematical Reviews number (MathSciNet)
MR1235423

Zentralblatt MATH identifier
0783.60067

JSTOR
links.jstor.org

Subjects
Primary: 60J15

Keywords
Reversible random walks central limit theorem random bond conductivity

Citation

Boivin, Daniel. Weak Convergence for Reversible Random Walks in a Random Environment. Ann. Probab. 21 (1993), no. 3, 1427--1440. doi:10.1214/aop/1176989125. https://projecteuclid.org/euclid.aop/1176989125


Export citation