The Annals of Probability

Large Deviations from a Hydrodynamic Scaling Limit for a Nongradient System

Jeremy Quastel

Full-text: Open access

Abstract

The hydrodynamic limit appears as a law of large numbers for rescaled density profiles of a large stochastic system. We study the large deviations from this scaling limit for a particular nongradient system, the nongradient version of the Ginzburg-Landau model.

Article information

Source
Ann. Probab., Volume 23, Number 2 (1995), 724-742.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176988286

Digital Object Identifier
doi:10.1214/aop/1176988286

Mathematical Reviews number (MathSciNet)
MR1334168

Zentralblatt MATH identifier
0843.60087

JSTOR
links.jstor.org

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60F10: Large deviations 82C21: Dynamic continuum models (systems of particles, etc.)

Keywords
Large deviations hydrodynamic limit Ginzburg-Landau model nongradient system

Citation

Quastel, Jeremy. Large Deviations from a Hydrodynamic Scaling Limit for a Nongradient System. Ann. Probab. 23 (1995), no. 2, 724--742. doi:10.1214/aop/1176988286. https://projecteuclid.org/euclid.aop/1176988286


Export citation