The Annals of Probability

Threshold for monotone symmetric properties through a logarithmic Sobolev inequality

Raphaël Rossignol

Full-text: Open access

Abstract

Threshold phenomena are investigated using a general approach, following Talagrand [Ann. Probab. 22 (1994) 1576–1587] and Friedgut and Kalai [Proc. Amer. Math. Soc. 12 (1999) 1017–1054]. The general upper bound for the threshold width of symmetric monotone properties is improved. This follows from a new lower bound on the maximal influence of a variable on a Boolean function. The method of proof is based on a well-known logarithmic Sobolev inequality on {0,1}n. This new bound is shown to be asymptotically optimal.

Article information

Source
Ann. Probab., Volume 34, Number 5 (2006), 1707-1725.

Dates
First available in Project Euclid: 14 November 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1163517220

Digital Object Identifier
doi:10.1214/009117906000000287

Mathematical Reviews number (MathSciNet)
MR2271478

Zentralblatt MATH identifier
1115.60021

Subjects
Primary: 60F20: Zero-one laws
Secondary: 28A35: Measures and integrals in product spaces 60E15: Inequalities; stochastic orderings

Keywords
Threshold influence of variables zero–one law logarithmic Sobolev inequalities

Citation

Rossignol, Raphaël. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality. Ann. Probab. 34 (2006), no. 5, 1707--1725. doi:10.1214/009117906000000287. https://projecteuclid.org/euclid.aop/1163517220


Export citation

References

  • Beckner, W. (1975). Inequalities in Fourier analysis. Ann. of Math. (2) 102 159--182.
  • Benjamini, I., Kalai, G. and Schramm, O. (2003). First passage percolation has sublinear distance variance. Ann. Probab. 31 1970--1978.
  • Bollobás, B. (1984). The evolution of random graphs. Trans. Amer. Math. Soc. 286 257--274.
  • Bollobás, B. (1985). Random Graphs. Academic Press Inc., London.
  • Bollobás, B., Borgs, C., Chayes, J. T., Kim, J. H. and Wilson, D. B. (2001). The scaling window of the 2-SAT transition. Random Structures Algorithms 18 201--256.
  • Bonami, A. (1971). Etude des coefficients de Fourier de $L^p(G)$. Ann. Inst. Fourier (Grenoble) 20 335--402.
  • Boucheron, S., Lugosi, G. and Massart, P. (2003). Concentration inequalities using the entropy method. Ann. Probab. 31 1583--1614.
  • Bourgain, J. and Kalai, G. (1997). Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal. 7 438--461.
  • Coupier, D., Desolneux, A. and Ycart, B. (2005). Image denoising by statistical area thresholding. J. Math. Imaging Vision 22 183--197.
  • Creignou, N. and Daude, H. (1999). Satisfiability threshold for random XOR--CNF formulas. Discrete Appl. Math. 96/97 41--53.
  • Devroye, L. and Lugosi, G. (2001). Combinatorial Methods in Density Estimation. Springer, New York.
  • Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 17--61.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications II, 2nd ed. Wiley, London.
  • Friedgut, E. (1999). Sharp thresholds of graph properties, and the $k$-sat problem. Amer. Math. Soc. 12 1017--1054.
  • Friedgut, E. and Kalai, G. (1996). Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 2993--3002.
  • Grimmett, G. (1989). Percolation. Springer, New York.
  • Gross, L. (1993). Logarithmic Sobolev inequalities and contractivity properties of semigroups. In Dirichlet Forms. Lecture Notes in Math. 1563 54--88. Springer, Berlin.
  • Higuchi, Y. and Yoshida, N. (1995). Analytic conditions and phase transitions for Ising models. Unpublished notes. (In Japanese.)
  • Ledoux, M. (1997). On Talagrand's deviation inequalities for product measures. ESAIM Probab. Statist. 1 63--87.
  • Margulis, G. A. (1974). Probabilistic characteristics of graphs with large connectivity. Problemy Peredači Informacii 10 101--108.
  • Paroissin, C. and Ycart, B. (2003). Zero--one law for the non-availability of multistate repairable systems. Int. J. of Reliability, Quality and Safety Engineering 10 311--322.
  • Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
  • Rossignol, R. (2000). Largeur du seuil pour une propriété croissante et symétrique. Mémoire de DEA, Orsay. Available at http://www.math-info.univ-paris5.fr/~rost/0-1_dea.pdf.
  • Rossignol, R. (2005). Largeur de seuil dans les lois du Zéro--Un. Ph.D. thesis, Université Paris 5--René Descartes. Available at http://www.math-info.univ-paris5.fr/~rost/these_pdf.pdf.
  • Russo, L. (1982). An approximate zero--one law. Z. Wahrsch. Verw. Gebiete 61 129--139.
  • Saloff-Coste, L. (1997). Lectures on finite Markov chains. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1665 301--413. Springer, Berlin.
  • Spencer, J. (1993). Nine lectures on random graphs. École d'Été de Probabilités de Saint-Flour XXI---1991. Lecture Notes in Math. 1541 293--347. Springer, Berlin.
  • Talagrand, M. (1993). Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem. Geom. Funct. Anal. 3 295--314.
  • Talagrand, M. (1994). On Russo's approximate zero--one law. Ann. Probab. 22 1576--1587.
  • Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 73--205.
  • Talagrand, M. (1996). A new look at independence. Ann. Probab. 24 1--34.