The Annals of Probability

Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes

M. E. Caballero and L. Chaumont

Full-text: Open access


Using Lamperti’s relationship between Lévy processes and positive self-similar Markov processes (pssMp), we study the weak convergence of the law ℙx of a pssMp starting at x>0, in the Skorohod space of càdlàg paths, when x tends to 0. To do so, we first give conditions which allow us to construct a càdlàg Markov process X(0), starting from 0, which stays positive and verifies the scaling property. Then we establish necessary and sufficient conditions for the laws ℙx to converge weakly to the law of X(0) as x goes to 0. In particular, this answers a question raised by Lamperti [Z. Wahrsch. Verw. Gebiete 22 (1972) 205–225] about the Feller property for pssMp at x=0.

Article information

Ann. Probab., Volume 34, Number 3 (2006), 1012-1034.

First available in Project Euclid: 27 June 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G18: Self-similar processes 60G51: Processes with independent increments; Lévy processes 60B10: Convergence of probability measures

Self-similar Markov process Lévy process Lamperti representation overshoot weak convergence first passage time


Caballero, M. E.; Chaumont, L. Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 (2006), no. 3, 1012--1034. doi:10.1214/009117905000000611.

Export citation


  • Bertoin, J. (1996). Lévy Processes. Cambridge Univ. Press.
  • Bertoin, J. and Caballero, M. E. (2002). Entrance from $0+$ for increasing semi-stable Markov processes. Bernoulli 8 195--205.
  • Bertoin, J., van Harn, K. and Steutel, F. W. (1999). Renewal theory and level passage by subordinators. Statist. Probab. Lett. 45 65--69.
  • Bertoin, J. and Yor, M. (2002). The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 389--400.
  • Caballero, M. E. and Chaumont, L. (2006). Conditioned stable processes and Lamperti transformation. Preprint of the LPMA.
  • Chaumont, L. (1996). Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 39--54.
  • Chaumont, L. and Doney, R. A. (2005). On Lévy process conditionned to stay positive. Electron. J. Probab. 10 948--961.
  • Chow, Y. S. (1986). On moments of ladder height variables. Adv. in Appl. Math. 7 46--54.
  • Doney, R. A. (2004). Convergence of the ladder process as the drift tends to 0. Private communication.
  • Doney, R. A. and Maller, R. A. (2002). Stability of the overshoot for Lévy processes. Ann. Probab. 30 188--212.
  • Lamperti, J. (1972). Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 205--225.
  • Rivero, V. (2004). Recouvrements aléatoires et prosessus de Markov auto-similaires. Ph.D. thesis, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris 6.
  • Rivero, V. (2005). Recurrent extensions of self-similar Markov processes and Cramer's condition. Bernoulli 11 471--509.
  • Spitzer, F. (1964). Principles of Random Walks. Van Nostrand, Princeton, NJ.