The Annals of Probability
- Ann. Probab.
- Volume 34, Number 2 (2006), 728-742.
A characterization of the infinitely divisible squared Gaussian processes
Nathalie Eisenbaum and Haya Kaspi
Abstract
We show that, up to multiplication by constants, a Gaussian process has an infinitely divisible square if and only if its covariance is the Green function of a transient Markov process.
Article information
Source
Ann. Probab., Volume 34, Number 2 (2006), 728-742.
Dates
First available in Project Euclid: 9 May 2006
Permanent link to this document
https://projecteuclid.org/euclid.aop/1147179987
Digital Object Identifier
doi:10.1214/009117905000000684
Mathematical Reviews number (MathSciNet)
MR2223956
Zentralblatt MATH identifier
1102.60031
Subjects
Primary: 60E07: Infinitely divisible distributions; stable distributions 60G15: Gaussian processes 60J25: Continuous-time Markov processes on general state spaces 60J55: Local time and additive functionals
Keywords
Gaussian processes infinite divisibility Markov processes local time
Citation
Eisenbaum, Nathalie; Kaspi, Haya. A characterization of the infinitely divisible squared Gaussian processes. Ann. Probab. 34 (2006), no. 2, 728--742. doi:10.1214/009117905000000684. https://projecteuclid.org/euclid.aop/1147179987