The Annals of Probability

Dynamical stability of percolation for some interacting particle systems and ɛ-movability

Erik I. Broman and Jeffrey E. Steif

Full-text: Open access


In this paper we will investigate dynamic stability of percolation for the stochastic Ising model and the contact process. We also introduce the notion of downward and upward ɛ-movability which will be a key tool for our analysis.

Article information

Ann. Probab., Volume 34, Number 2 (2006), 539-576.

First available in Project Euclid: 9 May 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82C43: Time-dependent percolation [See also 60K35] 82B43: Percolation [See also 60K35] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Percolation stochastic Ising models contact process


Broman, Erik I.; Steif, Jeffrey E. Dynamical stability of percolation for some interacting particle systems and ɛ -movability. Ann. Probab. 34 (2006), no. 2, 539--576. doi:10.1214/009117905000000602.

Export citation


  • Aizenman, M., Bricmont, J. and Lebowitz, J. L. (1987). Percolation of the minority spins in high-dimensional ising models. J. Statist. Phys. 49 859.
  • van den Berg, J., Meester, R. and White, D. G. (1997). Dynamic Boolean models. Stochastic Process. Appl. 69 247--257.
  • Bricmont, J., Lebowitz, J. L. and Maes, C. (1987). Percolation in strongly correlated systems: The massless Gaussian field. J. Statist. Phys. 48 1249--1268.
  • Broman, E. I., Häggström, O. and Steif, J. E. (2006). Refinements of stochastic domination. Probab. Theory Related Fields. To appear.
  • Coniglio, A., Nappi, C. R., Peruggi, F. and Russo, L. (1976). Percolation and phase transitions in the Ising model. Comm. Math. Phys. 51 315--323.
  • Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA.
  • Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89--103.
  • Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. de Gruyter, Berlin.
  • Georgii, H.-O., Häggström, O. and Maes, C. (2001). The random geometry of equilibrium phases. In Phase Transitions and Critical Phenomena 18 (C. Domb and J. L. Lebowitz, eds.) 1--142. Academic Press, San Diego, CA.
  • Grimmett, G. (1999). Percolation, 2nd ed. Springer, Berlin.
  • Häggström, O. (1996). The random-cluster model on a homogeneous tree. Probab. Theory Related Fields 104 231--253.
  • Häggström, O. (1997). Infinite clusters in dependent automorphism invariant percolation on trees. Ann. Probab. 25 1423--1436.
  • Häggström, O. (1998). Random-cluster representations in the study of phase transitions. Markov Process. Related Fields 4 275--321.
  • Häggström, O. (2000). Markov random fields and percolation on general graphs. Adv. in Appl. Probab. 32 39--66.
  • Häggström, O. Peres, Y. and Steif, J. E. (1997). Dynamical percolation. Ann. Inst. H. Poincare Probab. Statist. 33 497--528.
  • Higuchi, Y. (1993). Coexistence of infinite $(*)$-clusters. II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 1--33.
  • Higuchi, Y. (1993). A sharp transition for the two-dimensional Ising percolation. Probab. Theory Related Fields 97 489--514.
  • Holley, R. (1974). Remarks on the FKG inequalities. Comm. Math. Phys. 36 227--231.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Liggett, T. M. (1994). Survival and coexistence in interacting particle systems. In Probability and Phase Transition (G. Grimmett, ed.) 209--226. Kluwer, Dordrecht.
  • Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71--95.
  • Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. To appear.
  • Schramm, O. and Steif, J. E. (2005). Quantitative noise sensitivity and exceptional times for percolation. Preprint.
  • Shields, P. C. (1996). The Ergodic Theory of Discrete Sample Paths. Amer. Math. Soc., Providence, RI.