The Annals of Probability

The hyperbolic geometry of random transpositions

Nathanaël Berestycki

Full-text: Open access

Abstract

Turn the set of permutations of n objects into a graph Gn by connecting two permutations that differ by one transposition, and let σt be the simple random walk on this graph. In a previous paper, Berestycki and Durrett [In Discrete Random Walks (2005) 17–26] showed that the limiting behavior of the distance from the identity at time cn/2 has a phase transition at c=1. Here we investigate some consequences of this result for the geometry of Gn. Our first result can be interpreted as a breakdown for the Gromov hyperbolicity of the graph as seen by the random walk, which occurs at a critical radius equal to n/4. Let T be a triangle formed by the origin and two points sampled independently from the hitting distribution on the sphere of radius an for a constant 0<a<1. Then when a<1/4, if the geodesics are suitably chosen, with high probability T is δ-thin for some δ>0, whereas it is always O(n)-thick when a>1/4. We also show that the hitting distribution of the sphere of radius an is asymptotically singular with respect to the uniform distribution. Finally, we prove that the critical behavior of this Gromov-like hyperbolicity constant persists if the two endpoints are sampled from the uniform measure on the sphere of radius an. However, in this case, the critical radius is a=1−log2.

Article information

Source
Ann. Probab., Volume 34, Number 2 (2006), 429-467.

Dates
First available in Project Euclid: 9 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1147179978

Digital Object Identifier
doi:10.1214/009117906000000043

Mathematical Reviews number (MathSciNet)
MR2223947

Zentralblatt MATH identifier
1105.60073

Subjects
Primary: 60G50: Sums of independent random variables; random walks 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]
Secondary: 60C05: Combinatorial probability

Keywords
Random walks Gromov hyperbolic spaces phase transition random transpositions random graphs Cayley graphs

Citation

Berestycki, Nathanaël. The hyperbolic geometry of random transpositions. Ann. Probab. 34 (2006), no. 2, 429--467. doi:10.1214/009117906000000043. https://projecteuclid.org/euclid.aop/1147179978


Export citation

References

  • Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society Publishing House, Zürich.
  • Athreya, K. B. and Ney, A. (1972). Branching Processes. Springer, New York.
  • Berestycki, N. and Durrett, R. (2006). A phase transition in the random transposition random walk. Probab. Theory Related Fields. To appear.
  • Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications. Jones and Bartlett, Boston, MA.
  • Durrett, R. (2004). Probability: Theory and Examples, 3rd ed. Duxbury Press, Belmont, CA.
  • Durrett, R. (2005). Random Graphs. In preparation.
  • Gromov, M. (1987). Hyperbolic groups. Math. Sci. Res. Inst. Publ. 8 75--263.
  • Janson, S., Luczak, T. and Ruczinski, A. (2000). Random Graphs. Wiley, New York
  • Pitman, J. (2002). Poisson--Dirichlet and GEM invariant distributions for split-and-merge transformations of an interval partition. Combin. Probab. Comput. 11 501--514.
  • Pitman, J. (2006). Combinatorial Stochastic Processes. École d'Été de Probabilités de Saint-Flour XXXII. Lecture Notes in Math. 1875. Springer, Berlin.
  • Prat, J. J. (1971). Étude asymptotique du mouvement Brownien sur une variété Riemanienne à courbure négative. C. R. Acad. Sci. Sér A--B 272 A1586--A1589.
  • Schramm, O. (2005). Composition of random transpositions. Israel J. Math. 147 221--243.