The Annals of Probability

PDEs for the joint distributions of the Dyson, Airy and Sine processes

Mark Adler and Pierre van Moerbeke

Full-text: Open access

Abstract

In a celebrated paper, Dyson shows that the spectrum of an n×n random Hermitian matrix, diffusing according to an Ornstein–Uhlenbeck process, evolves as n noncolliding Brownian motions held together by a drift term. The universal edge and bulk scalings for Hermitian random matrices, applied to the Dyson process, lead to the Airy and Sine processes. In particular, the Airy process is a continuous stationary process, describing the motion of the outermost particle of the Dyson Brownian motion, when the number of particles gets large, with space and time appropriately rescaled.

In this paper, we answer a question posed by Kurt Johansson, to find a PDE for the joint distribution of the Airy process at two different times. Similarly we find a PDE satisfied by the joint distribution of the Sine process. This hinges on finding a PDE for the joint distribution of the Dyson process, which itself is based on the joint probability of the eigenvalues for coupled Gaussian Hermitian matrices. The PDE for the Dyson process is then subjected to an asymptotic analysis, consistent with the edge and bulk rescalings. The PDEs enable one to compute the asymptotic behavior of the joint distribution and the correlation for these processes at different times t1 and t2, when t2t1→∞, as illustrated in this paper for the Airy process. This paper also contains a rigorous proof that the extended Hermite kernel, governing the joint probabilities for the Dyson process, converges to the extended Airy and Sine kernels after the appropriate rescalings.

Article information

Source
Ann. Probab., Volume 33, Number 4 (2005), 1326-1361.

Dates
First available in Project Euclid: 1 July 2005

Permanent link to this document
https://projecteuclid.org/euclid.aop/1120224583

Digital Object Identifier
doi:10.1214/009117905000000107

Mathematical Reviews number (MathSciNet)
MR2150191

Zentralblatt MATH identifier
1093.60021

Subjects
Primary: 60G60: Random fields 60G65 35Q53: KdV-like equations (Korteweg-de Vries) [See also 37K10]
Secondary: 60G10: Stationary processes 35Q58

Keywords
Dyson’s Brownian motion Airy process extended kernels random Hermitian ensembles coupled random matrices

Citation

Adler, Mark; van Moerbeke, Pierre. PDEs for the joint distributions of the Dyson, Airy and Sine processes. Ann. Probab. 33 (2005), no. 4, 1326--1361. doi:10.1214/009117905000000107. https://projecteuclid.org/euclid.aop/1120224583


Export citation

References

  • Adler, M. and van Moerbeke, P. (1999). The spectrum of coupled random matrices. Ann. Math. 149 921--976.
  • Adler, M. and van Moerbeke, P. (2003). A PDE for the joint distribution of the Airy process. arXiv:math.PR/0302329.
  • Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, S. and Zhou, X. (1999). Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 1491--1552.
  • Dyson, F. J. (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191--1198.
  • Erdelyi, A. (1953). Higher Transcendental Functions 2. McGraw--Hill, New York.
  • Forrester, P. J., Nagao, T. and Honner, G. (1999). Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nuclear Phys. B 553 601--643.
  • Jimbo, M., Miwa, T., Mori, Y. and Sato, M. (1980). Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 80--158.
  • Johansson, K. (2003). Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 277--329.
  • Johansson, K. (2003). The Arctic circle boundary and the Airy process. arXiv:math.PR/ 0306216.
  • Krasikov, I. (2004). New bounds on the Hermite polynomials. arXiv:math.CA/0401310.
  • Macêdo, A. M. S. (1994). Universal parametric correlations at the soft edge of the spectrum of random matrix ensembles. Europhys. Lett. 26 641.
  • Prähofer, M. and Spohn, H. (2002). Scale invariance of the PNG droplet and the Airy process. J. Statist. Phys. 108 1071--1106.
  • Szegö, G. (1959). Orthogonal Polynomials. Amer. Math. Soc., Providence, RI.
  • Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151--174.
  • Tracy, C. A. and Widom, H. (1994). Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163 33--72.
  • Tracy, C. A. and Widom, H. (2003). A system of differential equations for the Airy process. Electron. Comm. Probab. 8 93--98.
  • Tracy, C. A. and Widom, H. (2003). Differential equations for Dyson processes. arXiv: math.PR/0309082.
  • Widom, H. (2003). On asymptotics for the Airy process. arXiv:math.PR/0308157.