The Annals of Probability

Mixing properties and exponential decay for lattice systems in finite volumes

Kenneth S. Alexander

Full-text: Open access

Abstract

An infinite-volume mixing or exponential-decay property in a spin system or percolation model reflects the inability of the influence of the configuration in one region to propagate to distant regions, but in some circumstances where such properties hold, propagation can nonetheless occur in finite volumes endowed with boundary conditions. We establish the absense [sic] of such propagation, particularly in two dimensions in finite volumes which are simply connected, under a variety of conditions, mainly for the Potts model and the Fortuin--Kasteleyn (FK) random cluster model, allowing external fields. For example, for the FK model in two dimensions we show that exponential decay of connectivity in infinite volume implies exponential decay in simply connected finite volumes, uniformly over all such volumes and all boundary conditions, and implies a strong mixing property for such volumes with certain types of boundary conditions. For the Potts model in two dimensions we show that exponential decay of correlations in infinite volume implies a strong mixing property in simply connected finite volumes, which includes exponential decay of correlations in simply connected finite volumes, uniformly over all such volumes and all boundary conditions.

Article information

Source
Ann. Probab., Volume 32, Number 1A (2004), 441-487.

Dates
First available in Project Euclid: 4 March 2004

Permanent link to this document
https://projecteuclid.org/euclid.aop/1078415842

Digital Object Identifier
doi:10.1214/aop/1078415842

Mathematical Reviews number (MathSciNet)
MR2040789

Zentralblatt MATH identifier
1048.60080

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
Exponential decay of correlations exponential decay of connectivities FK model Potts model weak mixing strong mixing

Citation

Alexander, Kenneth S. Mixing properties and exponential decay for lattice systems in finite volumes. Ann. Probab. 32 (2004), no. 1A, 441--487. doi:10.1214/aop/1078415842. https://projecteuclid.org/euclid.aop/1078415842


Export citation

References

  • Aizenman, M., Chayes, J. T., Chayes, L. and Newman, C. M. (1988). Discontinuity of the magnetization in the $1/|x - y|^2$ Ising and Potts models. J. Statist. Phys. 50 1--40.
  • Alexander, K. S. (1998). On weak mixing in lattice models. Probab. Theory Related Fields 110 441--471.
  • Alexander, K. S. (2001). The asymmetric random cluster model and comparison of Ising and Potts models. Probab. Theory Related Fields 120 395--444.
  • Alexander, K. S. (2001). Power-law corrections to exponential decay of connectivities and correlations in lattice models. Ann. Probab. 29 92--122.
  • Alexander, K. S. (2001). Cube-root boundary fluctuations for droplets in random cluster models. Comm. Math. Phys. 224 733--781.
  • Alexander, K. S. and Chayes, L. (1997). Non-perturbative criteria for Gibbsian uniqueness. Comm. Math. Phys. 189 447--464.
  • Biskup, M., Borgs, C., Chayes, J. T. and Kotecký, R. (2000). Gibbs states of graphical representations of the Potts model with external fields. Probabilistic techniques in equilibrium and nonequilibrium statistical physic. J. Math. Phys. 41 1170--1210.
  • Borgs, C. and Chayes, J. T. (1996). The covariance matrix of the Potts model: A random cluster analysis. J. Statist. Phys. 82 1235--1297.
  • Campanino, M., Chayes, J. T. and Chayes, L. (1991). Gaussian fluctuations of connectivities in the subcritical regime of percolation. Probab. Theory Related Fields 88 269--341.
  • Campanino, M. and Ioffe, D. (2002). Ornstein--Zernike theory for the Bernoulli bond percolation on $\mathbbZ^d$. Ann. Probab. 30 652--682.
  • Chayes, J. T. Private communication.
  • Edwards, R. G. and Sokal, A. D. (1988). Generalization of the Fortuin--Kasteleyn--Swendsen--Wang representation and Monte Carlo algorithm. Phys. Rev. D 38 2009--2012.
  • Fortuin, C. M. (1972). On the random cluster model. II. The percolation model. Physica 58 393--418.
  • Fortuin, C. M. (1972). On the random cluster model. III. The simple random-cluster process. Physica 59 545--570.
  • Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random cluster model. I. Introduction and relation to other models. Physica 57 536--564.
  • Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89--103.
  • Grimmett, G. R. (1995). The stochastic random-cluster process and uniqueness of random-cluster measures. Ann. Probab. 23 1461--1510.
  • Grimmett, G. R. (1997). Percolation and disordered systems. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1665 153--300. Springer, Berlin.
  • Holley, R. (1974). Remarks on the FKG inequalities. Comm. Math. Phys. 36 227--231.
  • Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals $1/2$. Comm. Math. Phys. 74 41--59.
  • Kesten, H. (1982). Percolation Theory for Mathematicians. Birkhäuser, Boston.
  • Laanait, L., Messager, A. and Ruiz, J. (1986). Phase coexistence and surface tensions for the Potts model. Comm. Math. Phys. 105 527--545.
  • Martinelli, F. and Olivieri, E. (1994). Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Comm. Math. Phys. 161 447--486.
  • Martinelli, F., Olivieri, E. and Schonmann, R. H. (1994). For 2-D lattice spin systems weak mixing implies strong mixing. Comm. Math. Phys. 165 33--47.
  • Newman, C. M. (1994). Disordered ising systems and random cluster representations. In Probability and Phase Transition 247--260. Kluwer, Dordrecht.
  • Pfister, C. Private communication.