The Annals of Probability

Renewal theory for functionals of a Markov chain with compact state space

Claudia Klüppelberg and Serguei Pergamenchtchikov

Full-text: Open access

Abstract

Motivated by multivariate random recurrence equations we prove a new analogue of the Key Renewal Theorem for functionals of a Markov chain with compact state space in the spirit of Kesten [Ann. Probab. 2 (1974) 355--386]. Compactness of the state space and a certain continuity condition allows us to simplify Kesten's proof considerably.

Article information

Source
Ann. Probab., Volume 31, Number 4 (2003), 2270-2300.

Dates
First available in Project Euclid: 12 November 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1068646385

Digital Object Identifier
doi:10.1214/aop/1068646385

Mathematical Reviews number (MathSciNet)
MR2016619

Zentralblatt MATH identifier
1048.60065

Subjects
Primary: 60J05: Discrete-time Markov processes on general state spaces 60K05: Renewal theory 60K15: Markov renewal processes, semi-Markov processes 60H25: Random operators and equations [See also 47B80]

Keywords
Key Renewal Theorem Markov chain random recurrence equation Riemann integrability

Citation

Klüppelberg, Claudia; Pergamenchtchikov, Serguei. Renewal theory for functionals of a Markov chain with compact state space. Ann. Probab. 31 (2003), no. 4, 2270--2300. doi:10.1214/aop/1068646385. https://projecteuclid.org/euclid.aop/1068646385


Export citation

References

  • Alsmeyer, G. (1994). On the Markov renewal theorem. Stochastic Process. Appl. 50 37--56.
  • Athreya, K. B., McDonald, D. and Ney, P. (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Probab. 6 788--797.
  • Borkovec, M. and Klüppelberg, C. (2001). The tail of the stationary distribution of an autoregressive process with ARCH(1) errors. Ann. Appl. Probab. 11 1220--1241.
  • Brandt, A., Franken, P. and Lisek, B. (1990). Stationary Stochastic Models. Wiley, Chichester.
  • de Haan, L., Resnick, S. I., Rootzén, H. and de Vries, C. G. (1989). Extremal behavior of solutions to a stochastic difference equation, with applications to ARCH processes. Stochastic Process. Appl. 32 213--224.
  • Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
  • Engle, R. F. (1995). ARCH. Selected Readings. Oxford Univ. Press.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2. Wiley, New York.
  • Fun, C. D. and Lai, T. L. (2001). Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks. Adv. in Appl. Probab. 33 652--673.
  • Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126--166.
  • Goldie, C. M. and Maller, R. (2000). Stability of perpetuities. Ann. Probab. 28 1195--1218.
  • Jacod, J. (1974). Corrections et compléments à l'article ``Théorème de renouvellement et classification pour les chaînes semi-markoviennes.'' Ann. Inst. H. Poincaré 10 201--209.
  • Kesten, H. (1973). Random difference equations and renewal theory for products of random matrixes. Acta. Math. 131 207--248.
  • Kesten, H. (1974). Renewal theory for functionals of a Markov chain with general state space. Ann. Probab. 2 355--386.
  • Klüppelberg, C. and Pergamenchtchikov, S. (2001). The tail of the stationary distribution of a random coefficient AR$(q)$ process with applications to an ARCH$(q)$ process. Ann. Appl. Probab. To appear.
  • LePage, E. (1983). Théorèmes de renouvellement pour les produits de matrixs aléatoires. Equations aux différences aléatoires. Publ. Sém. Math., Univ. Rennes.
  • Mikosch, T. and \Starica, C. (2000). Limit theory for the sample autocorrelations and extremes of a GARCH$(1,1)$ process. Ann. Statist. 28 1427--1451.
  • Rudin, W. (1964). Principles of Mathematical Analysis, 2nd ed. McGraw-Hill, New York.
  • Shurenkov, V. M. (1984). On the theory of Markov renewal. Theory Probab. Appl. 29 247--265.
  • Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Probab. 11 750--783.