The Annals of Probability

Strong solutions to the stochastic quantization equations

Giuseppe Da Prato and Arnaud Debussche

Full-text: Open access

Abstract

We prove the existence and uniqueness of a strong solution of the stochastic quantization equation in dimension 2 for almost all initial data with respect to the invariant measure. The method is based on a fixed point result in suitable Besov spaces.

Article information

Source
Ann. Probab. Volume 31, Number 4 (2003), 1900-1916.

Dates
First available in Project Euclid: 12 November 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1068646370

Digital Object Identifier
doi:10.1214/aop/1068646370

Mathematical Reviews number (MathSciNet)
MR2016604

Zentralblatt MATH identifier
1071.81070

Subjects
Primary: 81S20: Stochastic quantization 28C20: Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) [See also 46G12, 58C35, 58D20, 60B11] 42B99: None of the above, but in this section

Keywords
Stochastic quantization Gibbs measures Besov spaces pathwise solutions

Citation

Da Prato, Giuseppe; Debussche, Arnaud. Strong solutions to the stochastic quantization equations. Ann. Probab. 31 (2003), no. 4, 1900--1916. doi:10.1214/aop/1068646370. https://projecteuclid.org/euclid.aop/1068646370


Export citation

References

  • Albeverio, S. and Röckner, M. (1991). Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms. Probab. Theory Related Fields 89 347--386.
  • Albeverio, S., Haba, Z. and Russo, F. (2001). A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probab. Theory Related Fields 121 319--366.
  • Borkar, V. S., Chari, R. T. and Mitter, S. K. (1988). Stochastic quantization of field theory in finite and infinite volume. J. Funct. Anal. 81 184--206.
  • Chemin, J.-Y. (1995). Fluides parfaits incompressibles. Astérisque 230.
  • Chemin, J.-Y. (1996). About Navier--Stokes system. Prépublication R96023, Laboratoire d'Analyse Numérique de l'Université Paris 6.
  • Da Prato, G. and Debussche, A. (2002). Two-dimensional-Navier--Stokes equations driven by a space--time white noise. J. Functional Anal. 196 180--210.
  • Da Prato, G. and Tubaro, L. (1996). Introduction to stochastic quantization. Pubblicazione UTM 505, Dipartimento di Matematica dell'Università di Trento.
  • Da Prato, G. and Tubaro, L. (2000). A new method to prove self-adjointness of some infinite dimensional Dirichlet operator. Probab. Theory Related Fields 118 131--145.
  • Da Prato, G. and Zabczyk, J. (1992). Stochastic equations in infinite dimensions. Encyclopedia Math. Appl. 44. Cambridge Univ. Press.
  • Gatarek, D. and Goldys, B. (1996). Existence, uniqueness and ergodicity for the stochastic quantization equation. Studia Math. 119 179--193.
  • Jona Lasinio, G. and Mitter, P. K. (1985). On the stochastic quantization of field theory. Comm. Math. Phys. 101 409--436.
  • Liskevich, V. and Röckner, M. (1998). Strong uniqueness for a class of infinite dimensional Dirichlet operators and application to stochastic quantization. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 69--91.
  • Mikulevicius, R. and Rozovskii, B. (1998). Martingale problems for stochastic PDE's. Math. Surveys Monogr. 64 243--326.
  • Parisi, G. and Wu, Y. S. (1981). Perturbation theory without gauge fixing. Sci. China Ser. A 24 483--490.
  • Simon, B. (1974). The $P(\phi)_2$ Euclidean (Quantum) Field Theory. Princeton Univ. Press.