The Annals of Probability

Scaling limit of stochastic dynamics in classical continuous systems

Martin Grothaus, Yuri G. Kondratiev, Eugene Lytvynov, and Michael Röckner

Full-text: Open access

Abstract

We investigate a scaling limit of gradient stochastic dynamics associated with Gibbs states in classical continuous systems on ${\mathbb R}^d$, $d \ge 1$. The aim is to derive macroscopic quantities from a given microscopic or mesoscopic system. The scaling we consider has been investigated by Brox (in 1980), Rost (in 1981), Spohn (in 1986) and Guo and Papanicolaou (in 1985), under the assumption that the underlying potential is in $C^3_0$ and positive. We prove that the Dirichlet forms of the scaled stochastic dynamics converge on a core of functions to the Dirichlet form of a generalized Ornstein--Uhlenbeck process. The proof is based on the analysis and geometry on the configuration space which was developed by Albeverio, Kondratiev and Röckner (in 1998), and works for general Gibbs measures of Ruelle type. Hence, the underlying potential may have a singularity at the origin, only has to be bounded from below and may not be compactly supported. Therefore, singular interactions of physical interest are covered, as, for example, the one given by the Lennard--Jones potential, which is studied in the theory of fluids. Furthermore, using the Lyons--Zheng decomposition we give a simple proof for the tightness of the scaled processes. We also prove that the corresponding generators, however, do not converge in the $L^2$-sense. This settles a conjecture formulated by Brox, by Rost and by Spohn.

Article information

Source
Ann. Probab., Volume 31, Number 3 (2003), 1494-1532.

Dates
First available in Project Euclid: 12 June 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1055425788

Digital Object Identifier
doi:10.1214/aop/1055425788

Mathematical Reviews number (MathSciNet)
MR1989441

Zentralblatt MATH identifier
1053.60001

Subjects
Primary: 60B12: Limit theorems for vector-valued random variables (infinite- dimensional case) 82C22: Interacting particle systems [See also 60K35] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60J60: Diffusion processes [See also 58J65] 60H15: Stochastic partial differential equations [See also 35R60]

Keywords
Limit theorems interacting particle systems diffusion processes

Citation

Grothaus, Martin; Kondratiev, Yuri G.; Lytvynov, Eugene; Röckner, Michael. Scaling limit of stochastic dynamics in classical continuous systems. Ann. Probab. 31 (2003), no. 3, 1494--1532. doi:10.1214/aop/1055425788. https://projecteuclid.org/euclid.aop/1055425788


Export citation

References

  • [1] ALBEVERIO, S., KONDRATIEV, YU. G. and RÖCKNER, M. (1998). Analy sis and geometry on configuration spaces. J. Funct. Anal. 154 444-500.
  • [2] ALBEVERIO, S., KONDRATIEV, YU. G. and RÖCKNER, M. (1998). Analy sis and geometry on configuration spaces: The Gibbsian case. J. Funct. Anal. 157 242-291.
  • [3] BEREZANSKY, YU. M. and KONDRATIEV, YU. G. (1995). Spectral Methods in InfiniteDimensional Analy sis. Kluwer, Dordrecht. [Originally published (1988) in Russian, Naukova Dumka, Kiev.]
  • [4] BROX, T. (1980). Gibbsgleichgewichtsfluktuationen für einige Potentiallimiten. Ph.D. dissertation, Univ. Heidelberg.
  • [5] FRADON, M., ROELLY, S. and TANEMURA, H. (2000). An infinite sy stem of Brownian balls with infinite range interaction. Stochastic Process. Appl. 90 43-66.
  • [6] FUKUSHIMA, M., OSHIMA, Y. and TAKEDA, M. (1994). Dirichlet Forms and Sy mmetric Markov Processes. de Gruy ter, Berlin.
  • [7] GROTHAUS, M., KONDRATIEV, YU. G., Ly TVy NOV, E. and RÖCKNER, M. (2001). Scaling limit of stochastic dy namics in classical continuous sy stems. Bibos Preprint 01-08-051, Univ. Bielefeld.
  • [8] GUO, M. Z. and PAPANICOLAOU, G. (1985). Bulk diffusion for interacting Brownian particles. In Statistical physics and Dy namical Sy stems 41-48. Birkhäuser, Boston.
  • [9] HOLLEY, R. A. and STROOCK, D. W. (1978). Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motion. Publ. Res. Inst. Sci. 14 741-788.
  • [10] KALLENBERG, O. (1975). Random Measures. Academic Press, San Diego.
  • [11] KIPNIS, C. and LANDIM, C. (1999). Scaling Limits of Interacting Particle Sy stems. Springer, Berlin.
  • [12] KONDRATIEV, YU. G. and KUNA, T. (2002). Harmonic analysis on configuration space. I. General theory. Infinite Dimens. Anal. Quantum Probab. Relat. 5 201-233.
  • [13] KUNA, T. (1999). Studies in configuration space analysis and applications. Ph.D. dissertation, Univ. Bonn.
  • [14] LANG, R. (1977). Unendlichdimensionale Wienerprozesse mit Wechselwirkung I, II. Z. Wahrsch. Verw. Gebiete 38 55-72; 39 277-299.
  • [15] LENARD, A. (1973). Correlation functions and the uniqueness of the state in classical statistical mechanics. Comm. Math. Phy s. 30 35-44.
  • [16] LENARD, A. (1975). States of classical statistical mechanical sy stems of infinitely many particles I. Arch. Rational Mech. Anal. 59 219-239.
  • [17] LENARD, A. (1975). States of classical statistical mechanical sy stems of infinitely many particles II. Arch. Rational Mech. Anal. 59 241-256.
  • [18] Ly ONS, T. J. and ZHANG, T. S. (1994). Decomposition of Dirichlet processes and its applications. Ann. Probab. 22 494-524.
  • [19] Ly ONS, T. J. and ZHENG, W. A. (1988). A crossing estimate for the canonical process on a Dirichlet space and a tightness result. Colloque Paul Lévy sur les processes stochastique. Astérisque 157/158 249-272.
  • [20] MA, Z.-M. and RÖCKNER, M. (1992). Introduction to the Theory of (Non-Sy mmetric) Dirichlet Forms. Springer, Berlin.
  • [21] MA, Z.-M. and RÖCKNER, M. (2000). Construction of diffusions on configuration spaces. Osaka J. Math. 37 273-314.
  • [22] MALy SHEV, V. A. and MINLOS, R. A. (1991). Gibbs Random Fields: Cluster Expansion. Kluwer, Dordrecht.
  • [23] MINLOS, R. A. (1967). Limiting Gibbs distribution. Funktsional. Anal. Prilozhen. 1 60-73.
  • [24] NGUy EN, X. X. and ZESSIN, H. (1979). Integral and differentiable characterizations of the Gibbs process. Math. Nachr. 88 105-115.
  • [25] OSADA, H. (1996). Dirichlet form approach to infinite-dimensional Wiener process with singular interactions. Comm. Math. Phy s. 176 117-131.
  • [26] PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.
  • 1532 GROTHAUS, KONDRATIEV, Ly TVy NOV AND RÖCKNER
  • [27] RÖCKNER, M. (1998). Stochastic analysis on configuration spaces: Basic ideas and recent results. In New Directions in Dirichlet Forms (J. Jost, W. Kendall, U. Mosco, M. Röckner and K.-T. Sturm, eds.) 157-232. Amer. Math. Soc., Providence, RI.
  • [28] RÖCKNER, M. and SCHMULAND, B. (1998). A support property for infinite-dimensional interacting diffusion processes. C. R. Acad. Sci. Paris Sér. I Math. 326 359-364.
  • [29] ROST, H. (1981). Hy drody namik gekoppelter Diffusionen: Fluktuationen im Gleichgewicht. Dy namics and Processes. Lecture Notes in Math. 1031 97-107. Springer, Berlin.
  • [30] RUELLE, D. (1963). Correlation functions of classical gases. Ann. Phy s. 25 109-120.
  • [31] RUELLE, D. (1969). Statistical Mechanics. Rigorous Results. Benjamins, Amsterdam.
  • [32] RUELLE, D. (1970). Superstable interactions in classical statistical mechanics. Comm. Math. Phy s. 18 127-159.
  • [33] SHIGA, T. (1979). A remark on infinite-dimensional Wiener processes with interactions. Z. Wahrsch. Verw. Gebiete 47 299-304.
  • [34] SPOHN, H. (1986). Equilibrium fluctuations for interacting Brownian particles. Comm. Math. Phy s. 103 1-33.
  • [35] SPOHN, H. (1991). Large Scale Dy namics of Interacting Particles. Springer, Berlin.
  • [36] TANEMURA, H. (1997). Uniqueness of Dirichlet forms associated with sy stems of infinitely many Brownian balls in Rd. Probab. Theory Related Fields 109 275-299.
  • [37] YOSHIDA, M. W. (1996). Construction of infinite-dimensional interacting diffusion process through Dirichlet forms. Probab. Theory Related Fields 106 265-297.