Annals of Probability

Donsker's theorem for self-normalized partial sums processes

Miklós Csörgő, Barbara Szyszkowicz, and Qiying Wu

Full-text: Open access

Abstract

Let $X, X_1, X_2,\ldots$ be a sequence of nondegenerate i.i.d. random variables with zero means. In this paper we show that a self-normalized version of Donsker's theorem holds only under the assumption that X belongs to the domain of attraction of the normal law. A thus resulting extension of the arc sine law is also discussed. We also establish that a weak invariance principle holds true for self-normalized, self-randomized partial sums processes of independent random variables that are assumed to be symmetric around mean zero, if and only if $\max_{1\le j\le n}|X_j|/V_n\to_P 0$, as $n\to\infty$, where $V_n^2=\sum_{j=1}^{n}X_j^2$.

Article information

Source
Ann. Probab., Volume 31, Number 3 (2003), 1228-1240.

Dates
First available in Project Euclid: 12 June 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1055425777

Digital Object Identifier
doi:10.1214/aop/1055425777

Mathematical Reviews number (MathSciNet)
MR1988470

Zentralblatt MATH identifier
1045.60020

Subjects
Primary: 60F05: Central limit and other weak theorems 60F17: Functional limit theorems; invariance principles
Secondary: 62E20: Asymptotic distribution theory

Keywords
Donsker's theorem self-normalized sums arc sine law.

Citation

Csörgő, Miklós; Szyszkowicz, Barbara; Wu, Qiying. Donsker's theorem for self-normalized partial sums processes. Ann. Probab. 31 (2003), no. 3, 1228--1240. doi:10.1214/aop/1055425777. https://projecteuclid.org/euclid.aop/1055425777


Export citation

References

  • BILLINGSLEY, P. (1968). Convergence of Probability Mesures. Wiley, New York.
  • CSÖRG O, M., SZy SZKOWICZ, B. and WANG, Q. (2001). Donsker's theorem and weighted approximations for self-normalized partial sums processes. Technical Report 360, Laboratory for Research in Statistics and Probability, Carleton Univ. and Univ. of Ottawa.
  • CSÖRG O, M., SZy SZKOWICZ, B. and WANG, Q. (2003). Darling-Erd os theorems for selfnormalized sums. Ann. Probab. 31 676-692.
  • EGOROV, V. A. (1996). On the asy mptotic behavior of self-normalized sums of random variables. Teor. Veroy atnost. i Primenen. 41 643-650.
  • ERD OS, P. and KAC, M. (1946). On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. 52 292-302.
  • ERD OS, P. and KAC, M. (1947). On the number of positive sums of independent random variables. Bull. Amer. Math. Soc. 53 1011-1020.
  • FELLER, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New York.
  • GINE, E., GÖTZE, F. and MASON, D. M. (1997). When is the Student t-statistic asy mptotically standard normal? Ann. Probab. 25 1514-1531.
  • GRIFFIN, P. S. and KUELBS, J. D. (1989). Self-normalized laws of the iterated logatithm. Ann. Probab. 17 1571-1601.
  • GRIFFIN, P. S. and MASON, D. M. (1991). On the asy mptotic normality of self-normalized sums. Proc. Cambridge Phil. Soc. 109 597-610.
  • LÉVY, P. (1939). Sur certains processus stochastiques homogènes. Compositio Math. 7 283-339.
  • LOGAN, B. F., MALLOWS, C. L., RICE, S. O. and SHEPP, L. A. (1973). Limit distributions of self-normalized sums. Ann. Probab. 2 642-651.
  • O'BRIEN, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-Watson trees. J. Appl. Probab. 17 539-545.
  • PROHOROV, YU. V. (1956). Covergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1 157-214.
  • RA CKAUSKAS, A. and SUQUET, CH. (2000). Convergence of self-normalized partial sums processes in C[0, 1] and D[0, 1]. Pub. IRMA Lille 53-VI. Preprint.
  • RA CKAUSKAS, A. and SUQUET, CH. (2001). Invariance principles for adaptive self-normalized partial sums processes. Stochastic Process. Appl. 95 63-81.
  • SAKHANENKO, A. I. (1980). On unimprovable estimates of the rate of convergence in invariance principle. Colloquia Math. Soc. János Boly ai 32 779-783.
  • SAKHANENKO, A. I. (1984). On estimates of the rate of convergence in the invariance principle. In Advances in Probability Theory: Limit Theorems and Related Problems (A. A. Borovkov, ed.) 124-135. Springer, New York.
  • SAKHANENKO, A. I. (1985). Convergence rate in the invariance principle for non-identically distributed variables with exponential moments. In Advances in Probability Theory: Limit Theorems for Sums of Random Variables (A. A. Borovkov, ed.) 2-73. Springer, New York.
  • SPARRE-ANDERSEN, E. (1949). On the number of positive sums of random variables. Skand. Aktuarietidskrift 27-36.
  • TAKÁCS, L. (1981). The arc sine law of Paul Lévy. In Contributions to Probability. A Collection of Papers Dedicated to Eugene Lukács (J. Gani and V. K. Rohatgi, eds.). Academic Press, New York.
  • CANBERRA, ACT 0200 AUSTRALIA E-MAIL: qiying@wintermute.anu.edu.au