The Annals of Probability

Second phase changes in random $\boldsymbol{m}$-ary search trees and generalized quicksort: Convergence rates

Hsien-Kuei Hwang

Full-text: Open access

Abstract

We study the convergence rate to normal limit law for the space requirement of random $m$-ary search trees. While it is known that the random variable is asymptotically normally distributed for $3\le m\le 26$ and that the limit law does not exist for $m>26$, we show that the convergence rate is $O(n^{-1/2})$ for $3\le m\le 19$ and is $O(n^{-3(3/2-\alpha)})$, where $4/3<\alpha<3/2$ is a parameter depending on $m$ for $20\le m\le 26$. Our approach is based on a refinement to the method of moments and applicable to other recursive random variables; we briefly mention the applications to quicksort proper and the generalized quicksort of Hennequin, where more phase changes are given. These results provide natural, concrete examples for which the Berry--Esseen bounds are not necessarily proportional to the reciprocal of the standard deviation. Local limit theorems are also derived.

Article information

Source
Ann. Probab., Volume 31, Number 2 (2003), 609-629.

Dates
First available in Project Euclid: 24 March 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1048516530

Digital Object Identifier
doi:10.1214/aop/1048516530

Mathematical Reviews number (MathSciNet)
MR1964943

Zentralblatt MATH identifier
1021.60020

Keywords
Convergeance rates asymptotic normality phase change search trees quicksort method of moments local limit theorems

Citation

Hwang, Hsien-Kuei. Second phase changes in random $\boldsymbol{m}$-ary search trees and generalized quicksort: Convergence rates. Ann. Probab. 31 (2003), no. 2, 609--629. doi:10.1214/aop/1048516530. https://projecteuclid.org/euclid.aop/1048516530


Export citation

References

  • ALDOUS, D. (1996). Probability distributions on cladograms. In Random Discrete Structures (D. Aldous and R. Pemantle, eds.) 1-18. Springer, New York.
  • BARLOW, M. T., PEMANTLE, R. and PERKINS, E. A. (1997). Diffusion-limited aggregation on a tree. Probab. Theory Related Fields 107 1-60.
  • BEN-NAIM, E., KRAPIVSKY, P. L. and MAJUMDAR, S. N. (2001). Extremal properties of random trees. Phy s. Rev. E 64.
  • BERRY, A. C. (1941). The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc. 49 122-136.
  • CHERN, H.-H. and HWANG, H.-K. (2001). Phase changes in random m-ary search trees and generalized quicksort. Random Structures Algorithms 19 316-358.
  • DEVROy E, L. (1999). Universal limit laws for depths in random trees. SIAM J. Comput. 28 409-432.
  • DEVROy E, L. (2002). Limit laws for sums of functions of subtrees of random binary search trees. SIAM J. Comput. 32 152-171.
  • DONGARRA, J. and SULLIVAN, S. (2000). The top 10 algorithms. Computing in Science and Engineering January/February 22-23.
  • ESSEEN, C.-G. (1945). Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 77 1-125.
  • FILL, J. A. and JANSON, S. (2002). Quicksort asy mptotics. J. Algorithms 44 4-28.
  • GONNET, G. H. (1991). Handbook of Algorithms and Data Structures (in Pascal and C). AddisonWesley, Reading, MA.
  • HENNEQUIN, P. (1989). Combinatorial analysis of quicksort algorithm. RAIRO Inform. Théor. Appl. 23 317-333.
  • HENNEQUIN, P. (1991). Analy se en moy enne d'algorithme, tri rapide et arbres de recherche. Ph.D. thesis, Ecole Poly technique. Available at pauillac.inria.fr/algo/AofA/Research/src/ Hennequin.PhD.html.
  • HOARE, C. A. R. (1962). Quicksort. Comput. J. 5 10-15.
  • HWANG, H.-K. (1996). Large deviations for combinatorial distributions. I. Central limit theorems. Ann. Appl. Probab. 6 297-319.
  • HWANG, H.-K. and NEININGER, R. (2002). Phase changes of the limit laws in the quicksort recurrence under varying toll functions. SIAM J. Comput. 31 1687-1722.
  • LEW, W. and MAHMOUD, H. M. (1994). The joint distribution of elastic buckets in multiway search trees. SIAM J. Comput. 23 1050-1074.
  • MAHMOUD, H. M. (1992). Evolution of Random Search Trees. Wiley, New York.
  • MAHMOUD, H. M. (2002). The size of random bucket trees via urn models. Acta Inform. 38 813- 383.
  • MAHMOUD, H. M. and PITTEL, B. (1984). On the most probable shape of a search tree grown from random permutations. SIAM Journal on Algebraic and Discrete Methods 1 69-81.
  • MAHMOUD, H. M. and PITTEL, B. (1989). Analy sis of the space of search trees under the random insertion algorithm. J. Algorithms 10 52-75.
  • NEININGER, R. and RÜSCHENDORF, L. (2001). A general contraction theorem and asy mptotic normality in combinatorial structures. Available at www.stochastik.uni-freiburg.de/ homepages/neininger.
  • PETROV, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
  • PITTEL, B. (1999). Normal convergence problem? Two moments and a recurrence may be the clues. Ann. Applied Probab. 9 1260-1302.
  • SEDGEWICK, R. (1980). Quicksort. Garland, New York.