The Annals of Probability

Transience of second-class particles and diffusive bounds for additive functionals in one-dimensional asymmetric and exclusion processes

Timo Seppäläinen and Sunder Sethuraman

Full-text: Open access

Abstract

Consider a one-dimensional exclusion process with finite-range translation-invariant jump rates with nonzero drift. Let the process be stationary with product Bernoulli invariant distribution at density $\rho$. Place a second-class particle initially at the origin. For the case $\rho\neq 1/2$ we show that the time spent by the second-class particle at the origin has finite expectation. This strong transience is then used to prove that variances of additive functionals of local mean-zero functions are diffusive when $\rho\neq 1/2$. As a corollary to previous work, we deduce the invariance principle for these functionals. The main arguments are comparisons of $H_{-1}$ norms, a large deviation estimate for second-class particles and a relation between occupation times of second-class particles, and additive functional variances.

Article information

Source
Ann. Probab., Volume 31, Number 1 (2003), 148-169.

Dates
First available in Project Euclid: 26 February 2003

Permanent link to this document
https://projecteuclid.org/euclid.aop/1046294307

Digital Object Identifier
doi:10.1214/aop/1046294307

Mathematical Reviews number (MathSciNet)
MR1959789

Zentralblatt MATH identifier
1029.60083

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60F05: Central limit and other weak theorems

Keywords
Exclusion process second-class particle additive functionals invariance principle

Citation

Seppäläinen, Timo; Sethuraman, Sunder. Transience of second-class particles and diffusive bounds for additive functionals in one-dimensional asymmetric and exclusion processes. Ann. Probab. 31 (2003), no. 1, 148--169. doi:10.1214/aop/1046294307. https://projecteuclid.org/euclid.aop/1046294307


Export citation

References

  • [1] FERRARI, P. A. (1992). Shock fluctuations in asy mmetric simple exclusion. Probab. Theory Related Fields 91 81-110.
  • [2] FERRARI, P. and FONTES, L. (1994). Current fluctuations for the asy mmetric simple exclusion process. Ann. Probab. 22 820-832.
  • [3] FERRARI, P. and KIPNIS, C. (1995). Second-class particles in the rarefaction fan. Ann. Inst. H. Poincaré Probab. Statist. 31 143-154.
  • [4] JOHANSSON, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phy s. 209 437-476.
  • [5] KIPNIS, C. (1987). Fluctuations des temps d'occupation d'un site dans l'exclusion simple sy mmetrique. Ann. Inst. H. Poincaré Probab. Statist. 23 21-35.
  • [6] KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of reversible markov processes. Comm. Math. Phy s. 104 1-19.
  • [7] LIGGETT, T. M. (1985). Interacting Particle Sy stems. Springer, New York.
  • [8] ROST, H. (1981). Nonequilibrium behaviour of a many particle process: Density profile and local equilibrium. Z. Wahrsch. Verw. Gebiete 58 41-53.
  • [9] SAADA, E. (1987). A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab. 15 375-381.
  • [10] SEPPÄLÄINEN, T. (1998). Coupling the totally asy mmetric simple exclusion process with a moving interface I. Markov Process. Related Fields 4 593-628.
  • [11] SEPPÄLÄINEN, T. (1999). Existence of hy drody namics for the totally asy mmetric simple K-exclusion process. Ann. Probab. 27 361-415.
  • [12] SEPPÄLÄINEN, T. (2001). Second-class particles as microscopic characteristics in totally asy mmetric nearest-neighbor K-exclusion processes. Trans. Amer. Math. Soc. 353 4801- 4829.
  • [13] SETHURAMAN, S. (2000). Central limit theorems for additive functionals of the simple exclusion process. Ann. Probab. 28 277-302.
  • [14] SETHURAMAN, S. (2002). An Equivalence of H-1 norms for the simple exclusion process. Ann. Probab. 31 35-62.
  • [15] SETHURAMAN, S., VARADHAN, S. R. S. and YAU, H.T. (1999). Diffusive limit of a tagged particle in asy mmetric simple exclusion processes. Comm. Pure Appl. Math. 53 972- 1006.
  • [16] SETHURAMAN, S. and XU, L. (1996). A Central limit theorem for reversible exclusion and zero-range particle sy stems. Ann. Probab. 24 1842-1870.
  • [17] SPOHN, H. (1991). Large Scale Dy namics of Interacting Particles. Springer, Berlin.
  • [18] VARADHAN, S. R. S. (1995). Self-diffusion of a tagged particle in equilibrium for asy mmetric mean zero random walk with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 31 273-285.
  • MADISON, WISCONSIN 53706-1388 E-MAIL: seppalai@math.wisc.edu DEPARTMENT OF MATHEMATICS IOWA STATE UNIVERSITY 400 CARVER HALL
  • AMES, IOWA 50011 E-MAIL: sethuram@iastate.edu