The Annals of Probability

Spectral gap for zero-range dynamics

C. Landim, S. Sethuraman, and S. Varadhan

Full-text: Open access


We give a lower bound on the spectral gap for symmetric zero-range processes. Under some conditions on the rate function, we show that the gap shrinks as $n^{-2}$, independent of the density, for the dynamics localized on a cube of size $n^d$. We follow the method outlined by Lu and Yau, where a similar spectral gap is proved for Kawasaki dynamics.

Article information

Ann. Probab. Volume 24, Number 4 (1996), 1871-1902.

First available in Project Euclid: 6 January 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60F05: Central limit and other weak theorems

Particle systems ergodic measure zero-range process Dirichlet form


Landim, C.; Sethuraman, S.; Varadhan, S. Spectral gap for zero-range dynamics. Ann. Probab. 24 (1996), no. 4, 1871--1902. doi:10.1214/aop/1041903209.

Export citation


  • [1] Andjel, E. D. (1982). Invariant measures for the zero range process. Ann. Probab. 10 525- 547.
  • [2] Diaconis, P. and Freedman, D. A. (1988). Conditional limit theorems for exponential families and finite versions of de Finetti's theorem. J. Theoret. Probab. 1 381-410.
  • [3] Karlin, S. (1968). Total Positivity. Stanford Univ. Press.
  • [4] Kipnis, C. (1986). Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab. 14 397-408.
  • [5] Kipnis, C. and Landim, C. (1995). Hy drody namical Limit of Interacting Particle Sy stems. Preprint.
  • [6] Kipnis, C., Landim, C. and Olla, S. (1994). Hy drody namical limit for a non gradient sy stem: the generalized sy mmetric exclusion process. Comm. Pure Appl. Math. 47 1475-1545.
  • [7] Liggett, T. M. (1985). Interacting Particle Sy stems. Springer, New York.
  • [8] Lu, S. L. and Yau, H. T. (1993). Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dy namics. Comm. Math. Phy s. 156 399-433.
  • [9] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
  • [10] Quastel, J. (1992). Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. 45 623-679.
  • [11] Sethuraman, S. and Xu, L. (1996). A central limit theorem for conservative particle dy namics. Ann. Probab. 24 1622-1650.
  • [12] Sokal, A. D. and Thomas, L. E. (1989). Exponential convergence to equilibrium for a class of random-walk models. J. Statist. Phy s. 54 799-828.
  • [13] Varadhan, S. R. S. (1994). Nonlinear diffusion limit for a sy stem with nearest neighbor interactions II. In Asy mptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals (K. Elworthy and N. Ikeda, eds.) 75-128. Wiley, New York.