The Annals of Probability

Entropy minimization and Schrödinger processes in infinite dimensions

Hans Föllmer and Nina Gantert

Full-text: Open access


Schrödinger processes are defined as mixtures of Brownian bridges which preserve the Markov property. In finite dimensions, they can be characterized as $h$-transforms in the sense of Doob for some space-time harmonic function $h$ of Brownian motion, and also as solutions to a large deviation problem introduced by Schrödinger which involves minimization of relative entropy with given marginals. As a basic case study in infinite dimensions, we investigate these different aspects for Schrödinger processes of infinite-dimensional Brownian motion. The results and examples concerning entropy minimization with given marginals are of independent interest.

Article information

Ann. Probab., Volume 25, Number 2 (1997), 901-926.

First available in Project Euclid: 18 June 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J65: Brownian motion [See also 58J65] 60F10: Large deviations 60J45: Probabilistic potential theory [See also 31Cxx, 31D05] 60J25: Continuous-time Markov processes on general state spaces 94A17: Measures of information, entropy

Schrödinger processes Brownian motion Brownian sheet space-time harmonic functions relative entropy entropy minimization under given marginals large deviations stochastic mechanics


Föllmer, Hans; Gantert, Nina. Entropy minimization and Schrödinger processes in infinite dimensions. Ann. Probab. 25 (1997), no. 2, 901--926. doi:10.1214/aop/1024404423.

Export citation


  • AEBI, R. 1996. Schrodinger Diffusion Processes. Birkhauser, Basel. ¨ ¨ Z.
  • BERNSTEIN, S. 1932. Sur les liaisons entre les grandeurs aleatoires. Verh. Internat. Math. ´ Kongr. Zurich 1 288 309. ¨ Z.
  • BEURLING, A. 1960. An automorphism of product measures. Ann. Math. 72 189 200. Z.
  • BORWEIN, J. M. and LEWIS, A. S. 1992. Decomposition of multivariate functions. Canad. J. Math. 44 463 482. Z.
  • BORWEIN, J. M., LEWIS, A. S. and NUSSBAUM, R. 1994. Entropy minimization, DAD problems, and doubly stochastic kernels. J. Funct. Anal. 123 264 307. Z.
  • BROCKHAUS, O. 1995. Konditionierungen des Brownschen Blattes: Große Abweichungen und Schrodinger-Brucken. Bonner Math. Schriften 285. ¨ ¨ Z.
  • CSISZAR, I. 1975. I-divergence geometry of probability distribution and minimization problems. ´ Ann. Probab. 3 146 158. Z.
  • DAWSON, D., GOROSTIZA, L. and WAKOLBINGER, A. 1990. Schrodinger processes and large devia¨ tions. J. Math. Phys. 31 2385 2388. Z.
  • DONSKER, M. D. and VARADHAN, S. R. S. 1975. Asymptotic evaluation of certain Markov process expectations for large time. III. Comm. Pure Appl. Math. 29 389 461. Z.
  • DOOB, J. L. 1984. Classical Potential Theory and Its Probabilistic Counterpart. Springer, New York. Z.
  • FOLLMER, H. 1988. Random fields and diffusion processes. Ecole d'Ete de Saint Flour XV XVII. ¨ ´ Lecture Notes in Math. 1362 101 203. Springer, New York. Z.
  • FOLLMER, H. 1991. Martin boundaries on Wiener Space. In Diffusions Processes and Related ¨ Z. Problems in Analysis. I M. Pinsky, ed.. 3 16. Birkhauser, Basel. ¨ Z.
  • FORTET, R. 1940. Resolution d'un systeme d'equations de M. Schrodinger. J. Math. Pures Appl. ´ ´ ¨ Z. 9 83 105. Z.
  • GANTERT, N. 1994. Self-similarity of Brownian motion and a large deviation principle for random fields on a binary tree. Probab. Theory Related Fields 98 7 20. Z.
  • JAMISON, B. 1974. Reciprocal processes. Z. Wahrsch. Verw. Gebiete 30 65 86. Z.
  • JAMISON, B. 1975. The Markov process of Schrodinger. Z. Wahrsch. Verw. Gebiete 32 323 331. ¨ Z.
  • NAGASAWA, M. 1993. Schrodinger Equations and Diffusion Theory. Birkhauser, Basel. ¨ ¨ Z.
  • RUSCHENDORF, L. and THOMSEN, W. 1993. Note on the Schrodinger equation and I-projections. ¨ ¨ Statist. Probab. Lett. 17 369 375. ¨ Z.
  • SCHRODINGER, E. 1931. Uber die Umkehrung der Naturgesetze. Sitzungsber. Preuss. Akad. ¨ Wiss. Berlin Phys. Math. Kl. 8 9 144 153. Z.
  • SCHRODINGER, E. 1932. Sur la theorie relativiste de l'electron et l'interpretation de la mecanique ¨ ´ ´ ´ quantique. Ann. Inst. H. Poincare 2 269 310. ´ Z.
  • THIEULLEN, M. 1993. Second order stochastic differential equations and non gaussian reciprocal diffusions. Probab. Theory Related Fields 97 231 257. Z.
  • THIEULLEN, M. and ZAMBRINI, J. C. 1995. Symmetries in stochastic calculus of variations. Preprint, Laboratoire de Probabilites, Univ. Paris VI. ´