The Annals of Probability

The Euler scheme for Lévy driven stochastic differential equations

Philip Protter and Denis Talay

Full-text: Open access


In relation with Monte Carlo methods to solve some integro-differential equations, we study the approximation problem of $\mathbb{E}g(X_T)$ by $\mathbb{E}g(\overline{X}_T^n)$, where $(X_t, 0 \leq t \leq T)$ is the solution of a stochastic differential equation governed by a Lévy process $(Z_t), (\overline{X}_t^n)$ is defined by the Euler discretization scheme with step $T/n$. With appropriate assumptions on $g(\cdot)$, we show that the error of $\mathbb{E}g(X_T) - \mathbb{E}g(\overline{X}_T^n)$ can be expanded in powers of $1/n$ if the Lévy measure of $Z$ has finite moments of order high enough. Otherwise the rate of convergence is slower and its speed depends on the behavior of the tails of the Lévy measure.

Article information

Ann. Probab., Volume 25, Number 1 (1997), 393-423.

First available in Project Euclid: 18 June 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 65U05
Secondary: 65C5 60J30 60E07: Infinitely divisible distributions; stable distributions 65R20: Integral equations

Stochastic differenctial equations Lévy processes Euler method Monte Carlo methods simulation


Protter, Philip; Talay, Denis. The Euler scheme for Lévy driven stochastic differential equations. Ann. Probab. 25 (1997), no. 1, 393--423. doi:10.1214/aop/1024404293.

Export citation


  • 1 BALLY, V. and TALAY, D. 1996. The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Related Fields 104.
  • 2 BICHTELER, K. 1981. Stochastic integrators with independent increments.Wahrsch. Verw. Gebiete 58 529 548.
  • 3 BICHTELER, K. and JACOD, J. 1983. Calcul de Malliavin pour les diffusions avec sauts: existence d'une densite dans le cas unidimensionnel. In Seminaire de Probabilites ´ ´ ´ XVII. Lecture Notes in Math. 986 132 157. Springer, Berlin.
  • 4 BOULEAU, N. 1986. Probabilites de l'Ingenieur, Variables Aleatoires et Simulation. Her´ ´ ´ mann, Paris.
  • 5 BOULEAU, N. and LEPINGLE, D. 1993. Numerical Methods for Stochastic Processes. Wiley, New York.
  • 6 BURKHOLDER, D. 1973. Distribution function inequalities for martingales. Ann. Probab. 1 19 42.
  • 7 CHAMBERS, J. M., MALLOWS, C. L. and STUCK, B. W. 1976. A method for simulating stable random variables. J. Amer. Statist. Assoc. 71 340 344. 8 C ¸INLAR, E. Personal communication.
  • 14 DEVROYE, L. 1985. Non-Uniform Random Variate Generation. Springer, Berlin.
  • 15 FAMA, E. 1965. Behavior of stock market prices. J. Business 38 34 105.
  • 16 GOLDIE, C. 1967. A class of infinitely divisible random variables. Proc. Cambridge Philos. Soc. 63 1141 1143.
  • 17 JACOD, J. and PROTTER, P. 1991. Une remarque sur les equations differentielles stochas´ ´ tiques a solutions Markoviennes. Seminaire de Probabilites XXV. Lecture Notes in ´ ´ Math. 1485 138 139. Springer, Berlin.
  • 18 JARROW, R. and MADAN, D. 1994. Valuing and hedging contingent claims on semimartingales. Unpublished manuscript.
  • 19 JARROW, R. and MADAN, D. 1995. Option pricing using the term structure of interest rates to hedge systematic discontinuities in asset returns. Math. Finance 5 311 336.
  • 20 JARROW, R. and ROSENFELD, E. R. 1984. Jump risks and the intertemporal capital asset pricing model. Journal of Business 57 337 351.
  • 21 KANTER, G. M. 1975. Stable densities with change of scale and total variation inequalities. Ann. Probab. 3 697 707.
  • 22 KLOEDEN, P. E. and PLATEN, E. 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin.
  • 24 KURTZ, T. and PROTTER, P. 1991. Wong Zakai corrections, random evolutions and numerical schemes for S.D.E.'s. In Stochastic Analysis: Liber Amicorum for Moshe Zakai 331 346.
  • 25 MANDELBROT, B. 1963. The valuation of certain speculative prices. Journal of Business 36 394 419.
  • 26 MARTIN, G. Personal communication.
  • 27 MORAN, P. A. P. 1969. A theory of dams with continuous input and a general release rule. J. Appl. Probab. 6 88 98.
  • 28 NAVAS, J. 1994. Valuation of foreign currency options under stochastic interest rates and systematic jumps using the martingale approach. Ph.D. dissertation, Purdue Univ.
  • 29 PROTTER, P. 1990. Stochastic Integration and Differential Equations. Springer, Berlin.
  • 30 REVUZ, D. and YOR, M. 1991. Continuous Martingales and Brownian Motion. Springer, Berlin.
  • 31 STEUTEL, F. W. 1979. Infinite divisibility in theory and in practice. Scand. J. Statist. 6 57 64.
  • 32 STUCK, B. W. and KLEINER, B. 1974. A statistical analysis of telephone noise. The Bell System Technical Journal 53 1263 1320.
  • 33 TALAY, D. 1986. Discretisation d'une e.d.s. et calcul approche d'esperances de fonction´ ´ ´ nelles de la solution. Mathematical Modelling and Numerical Analysis 20 141 179.
  • 34 TALAY, D. 1995. Simulation and numerical analysis of stochastic differential systems: areview. In Probabilistic Methods in Applied Physics P. Kree and W. Wedig, eds. ´ 54 96. Springer, Berlin.
  • 35 TALAY, D. and TUBARO, L. 1990. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 94 120.